scholarly journals Macroarray Detection of Eleven Potato-Infecting Viruses and Potato spindle tuber viroid

Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 730-740 ◽  
Author(s):  
Bright Agindotan ◽  
Keith L. Perry

A macroarray was developed for the detection of 11 potato viruses and Potato spindle tuber viroid. The 11 viruses detected included those commonly found or tested for in North American potato seed certification programs: Alfalfa mosaic virus, Cucumber mosaic virus, Potato mop top virus, Potato leafroll virus, Potato latent virus, Potato virus A, Potato virus M, Potato virus S, Potato virus X, Potato virus Y, and Tobacco rattle virus. These viruses were detected using oligonucleotide 70-mer probes and labeled targets prepared by a random primed amplification procedure. Potato plants analyzed included those infected with 12 reference virus stocks and 36 field isolates. Results from the macroarray were entirely consistent with those obtained using a standard serological assay (enzyme-linked immunosorbent assay). Four isolates of Potato spindle tuber viroid, in mixed infection with one or more viruses, also were detected in the array, although strong hybridization signals required amplification with viroid-specific primers in combination with anchored-random primers. In individual plants, up to four viruses, or a viroid plus two viruses, were detected, with no apparent competition or inhibition. Macroarrays are a cost-effective approach to the simultaneous diagnostic detection of multiple pathogens from infected plants.

Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 609-615 ◽  
Author(s):  
R. Pourrahim ◽  
Sh. Farzadfar ◽  
A. R. Golnaraghi ◽  
A. Ahoonmanesh

From a total of 8,135 potato leaves collected from 132 fields in 11 provinces of Iran, the incidence and distribution of Alfalfa mosaic virus (AlMV), Eggplant mottled dwarf virus (EMDV), Potato leafroll virus (PLRV), Potato virus A (PVA), Potato virus M (PVM), Potato virus S(PVS), Potato virus X (PVX), Potato virus Y (PVY), and Tomato yellow fruit ring virus (TYFRV) were assessed using serological and biological methods. Based on enzyme-linked immunosorbent assay (ELISA) results, viruses in decreasing order of incidence in potato were PVS (35.9%), PVY (34.4%), PVA (27.0%), PVX (20.8%), PLRV (13.9%), PVM (9.0%), AlMV (7.0%), TYFRV (5.9%), and EMDV (5.1%). All 132 fields surveyed had some degree of virus infection, ranging from 28.8 to 98.6%, with an overall incidence of 75.2%. The highest and lowest incidence of virus infections among the surveyed provinces occurred in Kerman (93.2%) and Ardabil (56.7%), respectively. Overall, 25.0 and 50.2% of the collected potato samples had single or mixed infections, respectively. High levels of mixed infections were found between PVX and PVS (8.6%), and PVX and PVY (7.6%). Moreover, co-infection of samples with PVS and PVY, PVA and PVS, and PVA and PVY, the aphid-vectored virus/virus combinations, occurred at the highest incidence in almost all provinces surveyed, 15.3, 13.8, and 12.8%, respectively. In this study, Beet curly top virus was detected in symptomatic potato samples collected from some fields in the Kermanshah province.


Plant Disease ◽  
2010 ◽  
Vol 94 (10) ◽  
pp. 1248-1254 ◽  
Author(s):  
T. Maoka ◽  
S. Sugiyama ◽  
Y. Maruta ◽  
T. Hataya

A complementary DNA (cDNA) macroarray was developed for simultaneous detection of 12 different potato viruses. A suitable region in the viral genome for each was selected for Alfalfa mosaic virus, Cucumber mosaic virus, Potato aucuba mosaic virus, Potato leafroll virus, Potato mop-top virus, Potato virus A, Potato virus M, Potato virus S, Potato virus X, Potato virus Y, Tomato ringspot virus, and Tomato spotted wilt virus, and their respective cDNAs were cloned into plasmid vectors. Capture probes for each virus ranging from 290 to 577 bp were generated by polymerase chain reaction (PCR) and immobilized on a nylon membrane. Total RNAs were extracted from each of these virus infected-plants, and cDNAs were synthesized from the RNA extracts using a random 9-mer primer. Subsequently, PCR reactions were performed using one primer pair for each of the 12 viruses. During PCR, amplified cDNAs were labeled with biotin and used as a target for hybridization analyses on a macroarray membrane. Hybridization signals between capture probes for the 12 viruses and their respective target cDNAs were observed using chemiluminescent or colorimetric detection. In all viruses, hybridization signals with capture probes were detected only when homologous virus targets were examined, and no hybridization to healthy plant extract was observed, facilitating identification of each virus. The results by colorimetric detection agreed with those obtained using chemiluminescence. The macroarray method developed was 5 × 102 to 4 × 106 times more sensitive than enzyme-linked immunosorbent assay and 5 to 5 × 104 times more sensitive than reverse-transcription PCR, except for Alfalfa mosaic virus. Colorimetric detection and substantial reduction in cross-hybridization signals much improved the method compared with other array-based detection methods for practical use.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
X. D. Li ◽  
Y. Q. Li ◽  
H. G. Wang

Flue-cured tobacco is an important crop in Henan Province, China. During the 2000 growing season, many tobacco plants showed various degrees of mottling, mosaic, vein clearing, or vein necrosis in most of the counties. Some plants even died at an early stage of growth. A survey was conducted in May-June in several tobacco-growing counties, and the incidence of symptomatic plants in individual fields ranged from 10 to 85%. The most widely planted tobacco varieties, NC89, K326, and K346, were highly susceptible. Symptomatic plants were collected from Jiaxian and Xiangcheng counties and samples were tested by enzyme-linked immunosorbent assay for Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), and Potato virus X (PVX). Of 65 samples tested, 21 were positive for only PVY, 16 positive for only CMV, one each was positive for only TMV or PVX. Nineteen samples were doubly infected with various combinations of these viruses and six were infected with combinations of three viruses. The causal agent(s) in the remaining sample could not be determined. In total, CMV was detected in 40 samples, PVY in 38, PVX in 10, and TMV in 7 samples. TMV and CMV used to be the most important viruses and PVY occurred only rarely. But PVY has become prevalent in Henan and in neighboring Shandong province (2). CMV and TMV were reported to be the most prevalent viruses in Shanxi (1) and Fujian Provinces (3). Because resistant varieties are not available, and mixed infections are more common, the results presented here explain why huge damage is occurring in tobacco crops in recent years. Some varieties are partially resistant to TMV and CMV but the varieties commonly grown are highly susceptible to PVY. Therefore, breeding for resistance to viruses, especially to PVY, is urgent to control the occurrence of tobacco viral diseases. References: (1) J. L. Cheng et al. Acta Tabacaria Sin. 4:43, 1998. (2) J. B. Wang et al. Chinese Tobacco Sci. 1:26, 1998. (3) L. H. Xie et al. Acta Tabacaria Sin. 2:25, 1994.


2019 ◽  
Vol 71 (6) ◽  
pp. 2142-2156 ◽  
Author(s):  
Xue Yang ◽  
Yuwen Lu ◽  
Fang Wang ◽  
Ying Chen ◽  
Yanzhen Tian ◽  
...  

Abstract The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription–real-time PCR (qRT–PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.


Plant Disease ◽  
2005 ◽  
Vol 89 (11) ◽  
pp. 1244-1244 ◽  
Author(s):  
S. Soler ◽  
C. López ◽  
F. Nuez

The Andean region is home of important genetic diversity for the genus Lycopersicon. A survey of three asymptomatic populations of L. hirsutum, 17 of L. parviflorum, 188 of L. pimpinellifolium, and four cultivated populations of L. esculentum was made in nine departments of Ecuador. Samples were analyzed serologically for Tomato spotted wilt virus (TSWV), Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), Potato virus X (PVX), Groundnut ringspot virus (GRSV), Tomato chlorosis spot virus (TCSV), and Pepino mosaic virus (PepMV). Samples positive as determined using double-antibody sandwich enzyme-linked immunosorbent assay (absorbance values three times higher than negative controls) were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) with virus-specific primers. L pimpinellifolium was the only species of the four found to be infected with viruses. In the department of Manabí, ToMV was detected in 15 of 16 plants from one population, but only a single plant was infected with PepMV. In this department, PepMV was also detected in a single-plant population that corresponded to a volunteer plant found in the wild and TSWV was detected in another plant. In Esmeraldas and Guayas, two single-plant populations were found infected with PepMV and CMV, respectively. TMV, PVY, PVX, GRSV, and TCSV were not detected in this survey. Specific primers were selected for ToMV (To1/To2, genome coordinates 3498-3518/4902-4922, AJ417701), PepMV (Pe1/Pe2 genome coordinates 5030-5050/5913-5935, AJ606359), CMV (Cm1/Cm2 genome coordinates 541-561/1756-1779, D00356), and TSWV (Ts1/Ts2 genome coordinates 4078-4101/4738-4769, AF208498). Amplicons of the expected size were obtained using RT-PCR and then cloned and sequenced. DNA fragments of ToMV, PepMV, and TSWV showed identities greater than 99% with respective sequences in the GenBank database. The highest identity of the CMV DNA fragment was 92% with an isolate from Indonesia (AB042292). The occurrence of viruses such as CMV, ToMV, and TSWV in coastal Ecuador was not surprising. However, infected plants were not found among the samples collected in the departments of Azuay, Carchí, El Oro, Imbabura, Loja, and Pichincha in eastern Ecuador. L. chilense, L. chmielewskii, L. parviflorum, and L. peruvianum were previously reported as natural hosts of PepMV in central and southern Peru (2), and the virus was also detected in L. esculentum in Chile (1). Our results show that PepMV now occurs in wild L. pimpinellifolium populations along the Pacific coast of the South American continent and that it must have efficient means of transmission, although no specific vectors have as yet been identified for this virus. To our knowledge, this is the first report of PepMV in Ecuador and L. pimpinellifolium as a natural host of PepMV. References: (1) M. Muñoz et al. Fitopatología 37:67, 2002. (2) S. Soler et al. J. Phytopathol. 150:49, 2002.


2011 ◽  
Vol 26 (2) ◽  
pp. 117-127
Author(s):  
Jelena Zindovic

The research was carried out, in the period 2002-2004 in order to determine the presence and distribution of potato viruses at 12 different locations and on 9 different potato varieties grown in Montenegro. The research included collecting of samples in seed potato crops and testing of six economically important potato viruses: Potato leaf roll virus (PLRV), Potato virus Y (PVY), Potato virus X (PVX), Potato virus S (PVS), Potato virus A (PVA) i Potato virus M (PVM). Using the direct enzyme-linked immunosorbent assay (DAS-ELISA) and commercial antisera specific for six potato viruses, it was found that PVY was the most frequent virus during the three-year research period. The second frequent virus was PVS, followed by PVA, PLRV, PVM and PVX. Single and mixed infections were detected, and the most prevalent were the single infections of PVY. Also, in the period 2002-2004, PVY had the highest distribution and the number of present viruses was different at different localities and on different potato varieties. Further investigations were related to detailed characterization of the most prevalent virus (PVY), which is at the same time economically the most important one. Serological characterization of PVY was performed utilizing DAS-ELISA kit with commercial monoclonal antibodies specific for detection of the three strain groups of PVY, and the two strain groups - necrotic (PVYN/PVYNTN) and common (PVYO), were identified. Necrotic strains were prevalent in 2002 and 2004, while in 2003 PVYO was the most frequent strain in virus population. The presence of stipple streak strain (PVYC) was not detected in any of the tested samples.


Author(s):  
John Onditi ◽  
Moses Nyongesa ◽  
René van der Vlugt

AbstractIn most developing countries, farmers lack sufficient supply of certified or healthy potato seed tubers. Hence, they often plant their own saved ware potato tubers, a practice that is known to contribute to spread and increase the prevalence of plant viruses. In this study, we proposed options for managing the virus based on the knowledge obtained from surveys of virus prevalence and distribution in potato cultivars grown under such conditions. Potato leaf samples randomly collected from 354 farms in five major potato-growing counties in Kenya were tested for six potato viruses; potato virus Y (PVY), potato leaf roll virus (PLRV), potato virus X (PVX), potato virus M (PVM), potato virus A (PVA) and potato virus S (PVS) through DAS-ELISA. Virus prevalence in the fields was high; 72.9% of the samples were positive for at least one of the six viruses; and 55.9% showed multiple infections. A follow-up survey conducted during three consecutive seasons, in two of the five counties, revealed that virus prevalence fluctuated across seasons. This suggested that updated information on virus prevalence might be of value for designing a virus control strategy. Distribution maps showed the presence of the viruses restricted to specific geographic regions, an indication of where control efforts should be directed. Four cultivars, Sherekea, Shangi, Kenya Karibu and Asante, grown at a high virus-prevalent area, showed low values of average ELISA absorbance (OD), suggest a field resistance to the viruses. This study demonstrated that knowledge of prevalence and distribution may be of value to identify and recommend virus resistant cultivars to replace susceptible ones, especially in the virus hotspot areas.


2012 ◽  
Vol 93 (8) ◽  
pp. 1841-1850 ◽  
Author(s):  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Masamichi Nishiguchi ◽  
Tetsuo Tamada

Many plant viruses encode proteins that suppress RNA silencing, but little is known about the activity of silencing suppressors in roots. This study examined differences in the silencing suppression activity of different viruses in leaves and roots of Nicotiana benthamiana plants. Infection by tobacco mosaic virus, potato virus Y and cucumber mosaic virus but not potato virus X (PVX) resulted in strong silencing suppression activity of a transgene in both leaves and roots, whereas infection by beet necrotic yellow vein virus (BNYVV) and tobacco rattle virus (TRV) showed transgene silencing suppression in roots but not in leaves. For most viruses tested, viral negative-strand RNA accumulated at a very low level in roots, compared with considerable levels of positive-strand genomic RNA. Co-inoculation of leaves with PVX and either BNYVV or TRV produced an increase in PVX negative-strand RNA and subgenomic RNA (sgRNA) accumulation in roots. The cysteine-rich proteins (CRPs) BNYVV p14 and TRV 16K showed weak silencing suppression activity in leaves. However, when either of these CRPs was expressed from a PVX vector, there was an enhancement of PVX negative-strand RNA and sgRNA accumulation in roots compared with PVX alone. Such enhancement of PVX sgRNAs was also observed by expression of CRPs of other viruses and the well-known suppressors HC-Pro and p19 but not of the potato mop-top virus p8 CRP. These results indicate that BNYVV- and TRV-encoded CRPs suppress RNA silencing more efficiently in roots than in leaves.


Sign in / Sign up

Export Citation Format

Share Document