scholarly journals First Report of Natural Infection of Penstemon acuminatus with Cucumber mosaic virus in the Treasure Valley Region of Idaho and Oregon

Plant Disease ◽  
2009 ◽  
Vol 93 (7) ◽  
pp. 762-762 ◽  
Author(s):  
R. K. Sampangi ◽  
C. Almeyda ◽  
K. L. Druffel ◽  
S. Krishna Mohan ◽  
C. C. Shock ◽  
...  

Penstemons are perennials that are grown for their attractive flowers in the United States. Penstemon species (P. acuminatus, P. deustus, and P. speciosus) are among the native forbs considered as a high priority for restoration of great basin rangelands. During the summer of 2008, symptoms of red spots and rings were observed on leaves of P. acuminatus (family Scrophulariaceae) in an experimental trial in Malheur County, Oregon where the seeds from several native forbs were multiplied for restoration of range plants in intermountain areas. These plants were cultivated as part of the Great Basin Native Plant Selection and Increase Project. Several native wildflower species are grown for seed production in these experimental plots. Plants showed red foliar ringspots and streaks late in the season. Fungal or bacterial infection was ruled out. Two tospoviruses, Impatiens necrotic spot virus and Tomato spotted wilt virus, and one nepovirus, Tomato ring spot virus, are known to infect penstemon (2,3). Recently, a strain of Turnip vein-clearing virus, referred to as Penstemon ringspot virus, was reported in penstemon from Minnesota (1). Symptomatic leaves from the penstemon plants were negative for these viruses when tested by ELISA or reverse transcription (RT)-PCR. However, samples were found to be positive for Cucumber mosaic virus (CMV) when tested by a commercially available kit (Agdia Inc., Elkhart, IN). To verify CMV infection, total nucleic acid extracts from the symptomatic areas of the leaves were prepared and used in RT-PCR. Primers specific to the RNA-3 of CMV were designed on the basis of CMV sequences available in GenBank. The primer pair consisted of CMV V166: 5′ CCA ACC TTT GTA GGG AGT GA 3′ and CMV C563: 5′ TAC ACG AGG ACG GCG TAC TT 3′. An amplicon of the expected size (400 bp) was obtained and cloned and sequenced. BLAST search of the GenBank for related sequences showed that the sequence obtained from penstemon was highly identical to several CMV sequences, with the highest identity (98%) with that of a sequence from Taiwan (GenBank No. D49496). CMV from infected penstemon was successfully transmitted by mechanical inoculation to cucumber seedlings. Infection of cucumber plants was confirmed by ELISA and RT-PCR. To our knowledge, this is the first report of CMV infection of P. acuminatus. With the ongoing efforts to revegetate the intermountain west with native forbs, there is a need for a comprehensive survey of pests and diseases affecting these plants. References: (1) B. E. Lockhart et al. Plant Dis. 92:725, 2008. (2) D. Louro. Acta Hortic. 431:99, 1996. (3) M. Navalinskiene et al. Trans. Estonian Agric. Univ. 209:140, 2000.

Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1284-1284 ◽  
Author(s):  
G. Parrella ◽  
B. Greco

Yucca aloifolia L. (Spanish bayonet), family Asparagaceae, is the type species of the genus Yucca. It is native to Mexico and the West Indies and is appreciated worldwide as an ornamental plant. In 2013, during a survey for viruses in ornamental plants in the Campania region of southern Italy, symptoms consisting of bright chlorotic spots and ring spots 1 to 3 mm in diameter with some necrotic streaks were observed on leaves of two plants of Y. aloifolia growing in a nursery located in the Pignataro Maggiore municipality, Caserta Province. Cucumber mosaic virus (CMV) infection was suspected because the symptoms resembled those caused by CMV in Yucca flaccida (1). A range of herbal plant indicators was inoculated with sap extracts of symptomatic Y. aloifolia plants and developed symptoms indicative of CMV. Furthermore, 30 nm isometric virus particles were observed in the same Y. aloifolia sap extracts by transmission electron microscopy. The identity of the virus was confirmed by positive reaction in ELISA tests with CMV polyclonal antisera (Bioreba) conducted on sap extracts of symptomatic Y. aloifolia plants and systemically infected symptomatic hosts (i.e., Nicotiana tabacum, N. glutinosa, Cucumber sativus cv. Marketer, Solanum lycopersicum cv. San Marzano). The presence of CMV in the two naturally infected Y. aloifolia and other mechanically inoculated plants was further verified by reverse transcription (RT)-PCR. Total RNAs were extracted with the E.Z.N.A. Plant RNA Kit (Omega Bio-Tek), according to the manufacturer's instructions. RT-PCR was carried out with the ImProm-II Reverse Transcription System first-strand synthesis reaction (Promega) using the primer pair CMV1 and CMV2 (2). These primers amplify part of the CP gene and part of the 3′-noncoding region of CMV RNA3 and were designed to produce amplicons of different sizes to distinguish CMV isolates belonging to subgroups I or II (3). RT-PCR products were obtained from both naturally infected Y. aloifolia and mechanically inoculated plants as well as from PAE1 isolate of CMV (2), used as positive control, but not from healthy plants. Based on the length of the amplicons obtained (487 bp), the CMV isolate from Y. aloifolia (named YAL) belonged to subgroup I (3). The amplified RT-PCR products were purified with QIAquick PCR Purification Kit (Qiagen), cloned in the pGEMT vector (Promega), and three independent clones were sequenced at MWG (Ebersberg, Germany). Sequences obtained from the two CMV-infected Y. aloifolia plants were identical. This sequence was deposited at GenBank (Accession No. HG965199). Multiple alignments of the YAL sequence with sequences of other CMV isolates using MEGA5 software revealed highest percentage of identity (98.9%) with the isolates Z (AB369269) and SO (AF103992) from Korea and Japan, respectively. Moreover, the YAL isolate was identified as belonging to subgroup IA, based on the presence of only one HpaII restriction site in the 487-bp sequence, as previously proposed (2). Although CMV seems to not be a major threat currently for the production of Y. aloifolia, because the farming of this plant is performed using vegetative propagation, particular attention should be given to the presence of the virus in donor mother plants in order to avoid the dispersion of infected plants that could serve as sources for aphid transmission to other susceptible plant species. To our knowledge, this is the first report of CMV infection of Y. aloifolia in the world. References: (1) I. Bouwen et al. Neth. J. Plant Pathol. 84:175, 1978. (2) G. Parrella and D. Sorrentino. J. Phytopathol. 157:762, 2009. (3) Z. Singh et al. Plant Dis. 79:713, 1995.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1132-1132 ◽  
Author(s):  
M. C. Cebrián ◽  
M. C. Córdoba-Sellés ◽  
A. Alfaro-Fernández ◽  
J. A. Herrera-Vásquez ◽  
C. Jordá

Viburnum sp. is an ornamental shrub widely used in private and public gardens. It is common in natural wooded areas in the Mediterranean Region. The genus includes more than 150 species distributed widely in climatically mild and subtropical regions of Asia, Europe, North Africa, and the Americas. In January 2007, yellow leaf spotting in young plants of Viburnun lucidum was observed in two ornamental nurseries in the Mediterranean area of Spain. Symptoms appeared sporadically depending on environmental conditions but normally in cooler conditions. Leaf tissue from 24 asymptomatic and five symptomatic plants was sampled and analyzed by double-antibody sandwich (DAS)-ELISA with specific polyclonal antibodies against Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany) and Alfalfa mosaic virus (AMV) (SEDIAG S.A.S, Longvic, France). All symptomatic plants of V. lucidum were positive for Alfalfa mosaic virus (AMV). The presence of AMV was tested in the 29 samples by one-step reverse transcription (RT)-PCR with the platinum Taq kit (Invitrogen Life Technologies, Barcelona, Spain) using primers derived from a partial fragment of the coat protein gene of AMV (2). The RT-PCR assays produced an expected amplicon of 700 bp in the five symptomatic seropositive samples. No amplification product was observed when healthy plants or a water control were used as a template in the RT-PCR assays. One PCR product was purified (High Pure PCR Product Purification Kit; Roche Diagnostics, Mannheim, Germany) and directly sequenced (GenBank Accession No. EF427449). BLAST analysis showed 96% nucleotide sequence identity to an AMV isolate described from Phlox paniculata in the United States (GenBank Accession No. DQ124429). This virosis has been described as affecting Viburnum tinus L. in France (1). To our knowledge, this is the first report of natural infection of Viburnum lucidum with AMV in Spain, which might have important epidemiological consequences since V. lucidum is a vegetatively propagated ornamental plant. References: (1) L. Cardin et al. Plant Dis. 90:1115, 2006. (2) Ll. Martínez-Priego et al. Plant Dis. 88:908, 2004.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 574-574 ◽  
Author(s):  
Y. F. Wang ◽  
G. P. Wang ◽  
L. P. Wang ◽  
N. Hong

Taro (Colocasia esculenta L. Schott) is an important crop worldwide. In China, the growing area and productivity of taro increased greatly in recent years. During the 2010 to 2013 growing seasons (from May to July), the incidence of Cucumber mosaic virus (CMV) in taro was determined. Leaf samples from 91 taro plants, including 26 plants of cv. Hongyayu grown in Jiangxi Province in eastern China, 33 plants of cv. Eyu no.1 grown in Hubei Province in central China, and 32 plants of cv. Baiyu grown in Guangxi Province in southwest China were collected randomly and tested for the presence of CMV by reverse transcription (RT)-PCR. Some sampled plants of cv. Hongyayu and Eyu no.1 showed leaf chlorosis or chlorotic spots, and most of the plants of these three cultivars showed feather-like mosaic symptom on their leaves, which was confirmed to be associated with the infection of Dasheen mosaic virus (DsMV) in our previous studies (3). Total RNA was extracted from leaves using CTAB protocol reported by Li et al. (1). Primer set forward 5′-ATGGACAAATCTGAATCAACC-3′/reverse 5′-TAAGCTGGATGGACAACCCGT-3′ (4) was used for the amplification of a 777-bp fragment, which contains the complete capsid protein (CP) gene of 657 bp. PCR products of the expected size were identified from 11 taro samples, including two samples of Hongyayu, three Eyu no.1, and six Baiyu plants. The result did not show any specific association between the symptoms observed and CMV infection. The obtained PCR products were cloned individually into the vector pMD18-T (TaKaRa, Dalian, China). Three independent clones derived from each product were sequenced by Genscript Corp., Nanjing, China. Pairwise comparison of CP gene sequences (Accession No. of one representation CP sequence: KF564789) showed 99.7 to 99.8% nucleotide (nt) and 99.1 to 99.5% deduced amino acid (aa) sequence identity among themselves, and 92.0 to 94.3% and 76.5 to 77.7% nt identities with corresponding sequences of CMV isolates in subgroup I and subgroup II (2), respectively. The maximum likelihood phylogenetic trees of nt and aa sequences generated by Clustal X v1.8 revealed that all these CMV isolates from taro in China fell into subgroup I. To further confirm the CMV infection, leaf saps of CMV infected taro plants of cv. Eyu no.1 were mechanically inoculated onto Pinellia ternate and Cucumis sativus. Plants of P. ternate showed local chlorotic lesions on the inoculated leaves and downward curl of newly grown leaves, and C. sativus showed local chlorotic lesions on the inoculated leaves and crinkle of newly grown leaves at 10 to 15 days post inoculation. The RT-PCR detection confirmed the CMV infection in those inoculated plants, and that the plants of P. ternate were also positive to DsMV, further complementing the results obtained above. To our knowledge, this is the first report of CMV occurrence in taro plants grown in China. Our results indicated that taro plants were widely infected by CMV isolates in subgroup I. This study provides important information for further evaluating the viral sanitary status of taro germplasm and improving the certification program of taro propagation materials in China. References: (1) R. Li et al. J. Virol. Methods 154:48, 2008. (2) P. Palukaitis et al. Adv. Virus. Res. 62:241, 2003. (3) S. M. Shi et al. Acta Hortic. Sin. 39:509, 2012. (4) P. D. Xu et al. Chinese J. Virol. 15:164, 1999.


Plant Disease ◽  
2007 ◽  
Vol 91 (10) ◽  
pp. 1365-1365 ◽  
Author(s):  
C. Córdoba-Sellés ◽  
C. Cebrián-Mico ◽  
A. Alfaro-Fernández ◽  
M. J. Muñoz-Yerbes ◽  
C. Jordá-Gutiérrez

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) has a wide host range, with onion (Allium cepa L.) being one of the most economically important hosts. The first report of IYSV in Spain was from Albacete in 2003 (1) followed by the Canary Islands in 2005. In November of 2006, disease symptoms suspected to be caused by IYSV were observed on the central and outer leaves of commercial leeks plants (cvs. Asthow, Edison, and Shelton) from Alicante, Spain. Symptoms consisted of dry, white-to-straw-colored, spindle-shaped, irregular chlorotic and necrotic lesions on the leaves. Tissue from symptomatic leaves was sampled and analyzed by a double-antibody sandwich (DAS)-ELISA with specific polyclonal antibodies against Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV) (Biorad Phyto-Diagnostics, Marnes-La Coquette, France), IYSV, and Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany). Five of seven leek samples belonging to the three cultivars tested were positive for IYSV. All samples were negative for the other viruses tested. The presence of IYSV was verified in the positive samples by reverse transcription (RT)-PCR using primers derived from the nucleocapsid (N) gene of IYSV (1). RT-PCR gave a PCR amplicon of expected size (approximately 790 bp) from symptomatic leek plants. The product of one of the positive leek samples was purified and sequenced (GenBank Accession No. EF427447). Nucleotide sequence analysis confirmed the identity of the amplicon as that of the IYSV N gene. Sequence comparisons showed 99% identity with the sequence of the IYSV Spanish isolate available in GenBank (Accession No. EF419888). Thrips tabaci is the primary vector of IYSV. Although the vector is present in Spain, the efficiency of the Mediterranean ecotype in transmitting the virus is not known. Leek has been reported to be a host of IYSV in countries such as the Netherlands, Reunion Island, Australia, and the United States (2). To our knowledge, this is the first report of natural infection of leek with IYSV in Spain. References: (1) C. Córdoba-Sellés et al. Plant Dis. 89:1243, 2005. (2) H. F. Schwartz et al. Plant Dis. 91:113, 2007.


2012 ◽  
Vol 13 (1) ◽  
pp. 18 ◽  
Author(s):  
John R. Fisher

Cucumber mosaic virus (CMV) is a cosmopolitan virus which may also have small satellite RNAs (satRNA) associated with it affecting symptom development. Vinca minor (periwinkle) plants exhibiting subtle mosaic symptoms tested positive for CMV by enzyme linked immunosorbent assay (ELISA). Double-stranded ribonucleic acid (dsRNA) analysis of CMV-Vinca field isolates in Nicotiana tabacum ‘Glurk’ suggested two sizes of putative satRNA associated with CMV. Immunocapture RT-PCR, cloning, and sequencing of the movement protein, coat protein, and satRNAs demonstrated serogroup 1A and serogroup 2 CMV helper strains and three distinct classes of satRNAs of four sizes. Further, two classes of satRNAs could be distinguished by their necrosis domains. Previously CMV was reported in V. minor in New Jersey. This is the first report of CMV in V. minor in Ohio and the first report of satRNA associated with CMV in V. minor in the United States. Accepted for publication 1 February 2012. Published 12 April 2012.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 422-422 ◽  
Author(s):  
S. Bratsch ◽  
D. Mollov ◽  
B. Lockhart ◽  
D. Johnson ◽  
S. Ehlenbeck

Pachysandra terminalis Siebold & Zucc. (Japanese pachysandra, spurge) is widely used as a groundcover. In early 2012, Japanese pachysandra plants from Missouri, which originated in Pennsylvania, showed symptoms of light and dark green mosaic, leaf deformation, concentric ringspots, and stunting. Initial screening of symptomatic leaf tissue by transmission electron microscopy (TEM) using partially purified extracts confirmed the presence of spherical (~28 nm) and bacilliform (18-nm diameter, 35- to 58-nm length) virus particles. Immunosorbent electron microscopy (ISEM) using antisera to a clover isolate of Alfalfa mosaic virus (AMV) (PVAS 92) and to Cucumber mosaic virus (CMV) (ATCC PVAS-30) obtained from the American Type Culture Collection, Manassas, VA, confirmed the presence of AMV and CMV. No other type of virus-like particles were observed by TEM. After 6 months, nearly 20% of the 4,000 pachysandra cuttings exhibited the described symptoms. However, it is possible that more than 20% of the cuttings were infected with both viruses and not yet exhibiting symptoms. Reverse-transcription PCR (RT-PCR) was done using total RNA extracted with a Qiagen RNeasy kit and Ready-To-Go RT-PCR beads (GE Healthcare, UK Limited, UK). The primer pair CMV-1 (5′-GCCGTAAGCTGGATGGACCA) and CMV-2 (5′-TATGATAAGAAGCTTGTTTTCGCG) were used (3) to obtain a 502-bp amplicon from the coat protein (CP) region of CMV RNA 3. The product was ligated and cloned (pGEM-T Easy Vector System; Promega, USA). Three clones were sequenced (UMGC, USA), and the consensus sequence (Sequencher 5.1, Gene Codes Corp., USA) was deposited in GenBank (Accession No. JX227938). The sequence obtained had 100% identity with a homologous CP CMV sequence (AFQ94058) and 99% identity with several other homologous CP CMV sequences (CAX62443, CCK24369, and 15 others). It also contained an EcoRI site at nucleotides 332 to 337, characteristic of CMV Type II isolates (3). The primer pair AMV1F (5′-ATCCACCGATGCCAGCCTTA) and AMV1R (5′-TTCCGCCTCACTGCTGCTG) generated a 1,047-bp product from AMV RNA1 that was deposited in GenBank (JX227937). This product had 100% identity with a homologous AMV sequence (AFQ94057), and 99% identity with several other homologous AMV sequences (AGV15824, ADO85715, CBX36144). From the data presented here, it was concluded that the pachysandra had a mixed infection of AMV and a Type II isolate of CMV. Occurrence of AMV in pachysandra was first reported in New Jersey in 1982 (2) and reported for the first time in France and Germany in 2000 (1). The presence of CMV infection in pachysandra has not been reported in the present literature. Some of the symptoms associated with AMV infection in pachysandra in New Jersey (2) and Europe (1) were similar to the symptoms produced by pachysandra plants infected with both viruses (ring spots, mosaic, and line patterns). However, some symptoms were unique to the mixed infection in pachysandra by AMV and CMV (leaf deformation, stunting). A potential source of this co-infection could occur when plants are grown near alfalfa fields (AMV infection by aphids) and undergo vegetative propagation (CMV infection by contaminated tools). This is the first report of pachysandra co-infected by AMV and CMV in the United States. References: (1) L. Cardin and B. Moury. Plant Dis. 84:594, 2000. (2) D. E. Hershman and E. H. Varney. Plant Dis. 66:1195, 1982. (3) S. Wylie et al. Aust. J. Agric. Res. 44:41, 1993.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1449-1449 ◽  
Author(s):  
K. Milojević ◽  
I. Stanković ◽  
A. Vučurović ◽  
D. Nikolić ◽  
D. Ristić ◽  
...  

Tulips (Tulipa sp. L.), popular spring-blooming perennials in the Liliaceae family, are one of the most important ornamental bulbous plants, which have been cultivated for cut flower, potted plant, garden plant, and for landscaping. In May 2013, during a survey to determine the presence of Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) on ornamentals in Serbia, virus-like symptoms, including the presence of bright streaks, stripe and distortion of leaves, and reduced growth and flower size, were observed in an open field tulip production in the Krnjaca locality (a district of Belgrade, Serbia). Disease incidence was estimated at 20%. Symptomatic tulip plants were collected and tested for the presence of CMV by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kit (Bioreba, AG, Reinach, Switzerland). Commercial positive and negative controls were included in each ELISA. Of the six tulip plants tested, all were positive for CMV. In bioassay, five plants of each Chenopodium quinoa, Nicotiana tabacum ‘Samsun,’ and N. glutinosa were mechanically inoculated with sap from selected ELISA-positive sample (79-13) using 0.01 M phosphate buffer (pH 7). Chlorotic local lesions on C. quinoa, and severe mosaic and leaf malformations on N. tabacum ‘Samsun’ and N. glutinosa, were observed 5 and 14 days post-inoculation, respectively. All mechanically inoculated plants were positive for CMV in DAS-ELISA testing. For further confirmation of CMV presence in tulip, total RNAs from all ELISA-positive symptomatic tulip plants were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using specific primer pair CMVCPfwd and CMVCPrev (1), which flank conserved fragment of the RNA3 including the entire coat protein (CP) gene and part of 3′- and 5′-UTRs. Total RNAs obtained from the Serbian watermelon CMV isolate (GenBank Accession No. JX280942) and healthy tulip leaves served as the positive and negative controls, respectively. The RT-PCR products of 871 bp were obtained from all six samples that were serologically positive to CMV, as well as from the positive control. No amplicon was recorded in the healthy control. The amplified product which derived from isolate 79-13 was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions using the same primer pair as in RT-PCR, deposited in GenBank (KJ854451), and analyzed by MEGA5 software (4). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 79-13 shared the highest nucleotide identity of 99.2% (99% amino acid identity) with CMV isolates from Japan (AB006813) and the United States (S70105). To our knowledge, this is the first report on the occurrence of CMV causing mosaic on Tulipa sp. in Serbia. Taking into account vegetative reproduction of tulips and the large scale of international trade with tulip seeding material, as well as wide host range of CMV including a variety of ornamentals (2,3), this is a very important discovery representing a serious threat for the floriculture industry in Serbia. References: (1) K. Milojević et al. Plant Dis. 96:1706, 2012. (2) M. Samuitienė and M. Navalinskienė. Zemdirbyste-Agriculture 95:135, 2008. (3) D. Sochacki. J. Hortic. Res. 21:5, 2013. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 701-701
Author(s):  
K.-S. Ling ◽  
R. Li ◽  
D. Groth-Helms ◽  
F. M. Assis-Filho

In recent years, viroid disease outbreaks have resulted in serious economic losses to a number of tomato growers in North America (1,2,3). At least three pospiviroids have been identified as the causal agents of tomato disease, including Potato spindle tuber viroid (PSTVd), Tomato chlorotic dwarf viroid (TCDVd), and Mexican papita viroid (MPVd). In the spring of 2013, a severe disease outbreak with virus-like symptoms (chlorosis and plant stunting) was observed in a tomato field located in the Dominican Republic, whose tomato production is generally exported to the United States in the winter months. The transplants were produced in house. The disease has reached an epidemic level with many diseased plants pulled and disposed of accordingly. Three samples collected in May of 2013 were screened by ELISA against 16 common tomato viruses (Alfalfa mosaic virus, Cucumber mosaic virus, Impatiens necrotic spot virus, Pepino mosaic virus, Potato virus X, Potato virus Y, Tobacco etch virus, Tobacco mosaic virus, Tobacco ringspot virus, Tomato aspermy virus, Tomato bushy stunt virus, Tomato mosaic virus, Tomato ringspot virus, Tomato spotted wilt virus, Groundnut ringspot virus, and Tomato chlorotic spot virus), a virus group (Potyvirus group), three bacteria (Clavibacter michiganensis subsp. michiganensis, Pectobacterium atrosepticum, and Xanthomonas spp.), and Phytophthora spp. No positive result was observed, despite the presence of symptoms typical of a viral-like disease. Further analysis by RT-PCR using Agdia's proprietary pospiviroid group-specific primer resulted in positive reactions in all three samples. To determine which species of pospiviroid was present in these tomato samples, full-genomic products of the expected size (~360 bp) were amplified by RT-PCR using specific primers for PSTVd (4) and cloned using TOPO-TA cloning kit (Invitrogen, CA). A total of 8 to 10 clones from each isolate were selected for sequencing. Sequences from each clone were nearly identical and the predominant sequence DR13-01 was deposited in GenBank (Accession No. KF683200). BLASTn searches into the NCBI database demonstrated that isolate DR13-01 shared 97% sequence identity to PSTVd isolates identified in wild Solanum (U51895), cape gooseberry (EU862231), or pepper (AY532803), and 96% identity to the tomato-infecting PSTVd isolate from the United States (JX280944). The relatively lower genome sequence identity (96%) to the tomato-infecting PSTVd isolate in the United States (JX280944) suggests that PSTVd from the Dominican Republic was likely introduced from a different source, although the exact source that resulted in the current disease outbreak remains unknown. It may be the result of an inadvertent introduction of contaminated tomato seed lots or simply from local wild plants. Further investigation is necessary to determine the likely source and route of introduction of PSTVd identified in the current epidemic. Thus, proper control measures could be recommended for disease management. The detection of this viroid disease outbreak in the Dominican Republic represents further geographic expansion of the viroid disease in tomatoes beyond North America. References: (1). K.-S. Ling and M. Bledsoe. Plant Dis. 93:839, 2009. (2) K.-S. Ling and W. Zhang. Plant Dis. 93:1216, 2009. (3) K.-S. Ling et al. Plant Dis. 93:1075, 2009. (4) A. M. Shamloul et al. Can. J. Plant Pathol. 19:89, 1997.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1016-1016 ◽  
Author(s):  
B. Babu ◽  
H. Dankers ◽  
M. L. Paret

Scotch bonnet (Capsicum chinense) is a tropical hot pepper variety that is grown in South America, the Caribbean Islands, and in Florida, and is an important cash crop. In Florida, scotch bonnet is grown on ~100 acres annually. Virus-like leaf symptoms including mosaic and yellow mottling were observed on scotch bonnet plants in a field at Quincy, FL, with a disease incidence of ~5%. Two symptomatic and one non-symptomatic plant sample were collected from this field for identification of the causal agent associated with the symptoms. Viral inclusion assays (2) of the epidermal tissues of the symptomatic scotch bonnet samples using Azure A stain indicated the presence of spherical aggregates of crystalline inclusion bodies. Testing of the symptomatic samples using lateral flow immunoassays (Immunostrips, Agdia, Elkhart, IN) specific to Cucumber mosaic virus (CMV), Potato virus Y (PVY), Pepper mild mottle virus (PMMoV), Tobacco mosaic virus (TMV), Zucchini yellow mosaic virus (ZYMV), and Papaya ringspot virus (PRSV), showed a positive reaction only to CMV. The sap from an infected leaf sample ground in 0.01 M Sorensons phosphate buffer (pH 7.0) was used to mechanically inoculate one healthy scotch bonnet plant (tested negative for CMV with Immunostrip) at the 2- to 3-leaf stage. The inoculated plant developed mild mosaic and mottling symptoms 12 to 14 days post inoculation. The presence of CMV in the mechanically inoculated plant was further verified using CMV Immunostrips. Total RNA was extracted (RNeasy Plant Mini Kit, Qiagen, Valencia, CA) from the previously collected two symptomatic and one non-symptomatic scotch bonnet samples. The samples were subjected to reverse-transcription (RT)-PCR assays using SuperScript III One-Step RT-PCR System (Invitrogen, Life Technologies, Grand Island, NY), and using multiplex RT-PCR primer sets (1). The primers were designed to differentiate the CMV subgroup I and II, targeting the partial coat protein gene and the 3′UTR. The RT-PCR assays using the multiplex primers produced an amplicon of 590 bp, with the CMV subgroup I primers. The RT-PCR product was only amplified from the symptomatic leaf samples. The obtained amplicons were gel eluted, and directly sequenced bi-directionally (GenBank Accession Nos. KF805389 and KF805390). BLAST analysis of these sequences showed 97 to 98% nucleotide identities with the CMV isolates in the NCBI database. The isolates collected in Florida exhibited highest identity (98%) with the CMV isolate from tomato (DQ302718). These results revealed the association of CMV subgroup I with symptomatic scotch bonnet leaf samples. Although CMV has been reported from scotch bonnet, this is the first report of its occurrence in Florida. References: (1) S. Chen et al. Acta Biochim Biophys Sin. 43:465, 2011. (2) R. G. Christie and J. R. Edwardson. Plant Dis. 70:273, 1986.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1066-1066 ◽  
Author(s):  
S. J. Gawande ◽  
A. Khar ◽  
K. E. Lawande

Garlic (Allium sativum) is a spice crop of prime importance in India as well as other parts of the world. Iris yellow spot virus (IYSV; genus Tospovirus, family Bunyaviridae) is an important pathogen of onion bulb and seed crops in many parts of the world (3). The virus is also known to infect garlic and other Allium spp. (2–4). IYSV infection of garlic was reported from Reunion Island (4) and the United States (1). In February 2010, straw-colored, spindle-shaped spots with poorly defined ends were observed on the leaves of a garlic crop at the research farm of the Directorate of Onion and Garlic Research in the Pune District of Maharashtra State, India, 105 days after planting. The spots coalesced to form larger patches on the leaves, suggesting possible IYSV infection. Symptoms were visible on older leaves and more prevalent on cv. G-41, G-282, AC50, AC200, AC283, and Godavari than on other cultivars. The incidence of symptomatic plants was estimated at 5% for G-41 and AC-200, 8% for G-282 and AC283, and 10% for AC50. Leaves were sampled from 40 symptomatic plants per cultivar with each sample composited from young, middle, and older (basal) leaves of the plant. Samples were assayed by double-antibody sandwich-ELISA (Loewe Biochemica GmbH, Sauerlach, Germany) and each tested positive for the virus. Total RNA was extracted from the leaves of ELISA-positive plants using the RNAeasy Plant Mini kit (Qiagen GmbH, Hilden, Germany) and tested by reverse transcription-PCR assay using primers IYSV-F (5′-TCAGAAATCGAGAAACTT-3′) and IYSV-R (5′-TAATTATATCTATCTTTCTTGG-3′) (2) designed to amplify 797 bp of the nucleocapsid (N) gene of IYSV. Amplicons of expected size were obtained and cloned into a pDrive vector (Qiagen GmbH). The recombinant clone was sequenced (GenBank Accession No. HM173691). Sequence comparisons showed 98 to 100% nt identity with other IYSV N gene sequences in GenBank (Nos. EU310294 and EU310286). A phylogenetic analysis of the deduced amino acid sequences of the N gene showed that the garlic isolate of IYSV grouped most closely with onion IYSV isolates from India (GenBank Nos. EU310294, EU310286, EU310300, and EU310296). To our knowledge, this is the first report of natural infection of garlic by IYSV in India. Additional surveys and evaluations are needed to obtain a better understanding of the potential impact of IYSV on garlic production in India. References: (1) S. Bag et al. Plant Dis. 93:839, 2009. (2) A. Bulajic et al. Plant Dis. 93:976, 2009. (3) D. Gent et al. Plant Dis. 90:1468, 2006. (4) I. Robène-Soustrade et al. Plant Pathol. 55:288, 2006.


Sign in / Sign up

Export Citation Format

Share Document