scholarly journals First Report of a Soft Rot of Banana in Mainland China Caused by a Dickeya sp. (Pectobacterium chrysanthemi)

Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 640-640 ◽  
Author(s):  
B. R. Lin ◽  
H. F. Shen ◽  
X. M. Pu ◽  
X. S. Tian ◽  
W. J. Zhao ◽  
...  

Banana is one of the most important fruit crops grown in China (2). A severe outbreak of a soft rot of banana occurred in Guangzhou, China from 2009 to 2010. The disease was characterized by an odorous soft rot of the center of the rhizome. The rot progressed up the pseudostem, destroying the growing point and causing internal decay and often accompanied by vascular discoloration. Yellowing and wilting of the leaves were also characteristic symptoms. A survey of three areas of production of Musa sapientum (cv. ABB) covering 10 ha in Guangzhou revealed that 82% of the fields were affected at an incidence ranging from 20 to 40%. Forty-five bacterial isolates were obtained from lesions on plants sampled from these fields by surface-sterilizing symptomatic tissue in 0.3% NaOCl for 10 min, rinsing the tissue sections three times in sterile water, and plating the sections on nutrient agar. Three representative isolates selected randomly were all gram negative, caused a soft rot of potato disks, utilized malonate, tested positive for phosphatase production, and tested negative for acid production from palatinose, glucopyranoside, and trehalose. A Biolog similarity index of 0.803 indicated that the three isolates had a high similarity to the Biolog reference strain of Pectobacterium chrysanthemi (Version 4.2, Biolog Inc., Hayward, CA). The 16S rDNA sequence (GenBank Accession No. 1321085) of each of the three isolates was determined (1). When compared with sequences in GenBank, the highest degree of sequence similarity was with P. chrysanthemi AF373199. On the basis of a phylogenetic tree of the sequences, the three bacterial isolates are related to Pectobacterium (100% bootstrap values). On the basis of two diagnostic methods, the three isolates were identified as P. chrysanthemi. However, according to Samson et al. (3), they are a Dickeya sp. Additional genetic comparisons with type strains will be needed for the strains to be assigned to a known species of Dickeya. Pathogenicity of each of the three strains on M. sapientum (cv. ABB) was confirmed by injecting 60 40-day-old seedlings each with 5 ml of a suspension of the isolate (108 CFU/ml) into the rhizome. Sixty plants of the same cultivar injected with sterile water served as the control treatment. After 48 h, yellowing and wilting of the leaves, similar to symptoms observed on field plants, were observed on all inoculated seedlings for each of the three bacterial strains. There were no symptoms on the control plants. Koch's postulates were fulfilled by reisolating bacteria from lesions on the leaves of inoculated seedlings. The reisolates were identical to the inoculated strains in biochemical characteristics. Bacteria characteristic of the inoculated strains were not reisolated from the control plants. To our knowledge, this is the first report of a Dickeya sp. causing soft rot of banana in mainland China. References: (1) W. S. Kaneshiro et al. Plant Dis. 92:1444, 2008. (2) Y. P. Ke et al. China Trop. Agric. 1:14, 2008. (3) R. Samson et al. Evol. Microbiol. 55:1415, 2005.

Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 155-155 ◽  
Author(s):  
X. F. Chen ◽  
H. L. Zhang ◽  
J. Chen

A bacterial pathogen, Dickeya solani, emerged as a major threat to potato (Solanum tuberosum) production in Europe in 2004 and has spread to many potato-growing regions via international trade. In December 2013, soft rot symptoms were observed in hyacinth (Hyacinthus orientalis) bulbs imported from the Netherlands into China at Ningbo Port. Diseased bulbs gave off an offensive odor. The base and internal parts of diseased bulbs rotted, and the margins of diseased tissues showed brown discoloration. Isolation on nutrient agar glucose (NAG) medium resulted in dominating colonies of characteristic “fried egg” morphology (1). One colony was chosen for further investigation and tentatively named “isolate 6165-3.” Under microscopic visualization after gram stain, the cells of isolate 6165-3 were gram-negative, motile, and rod shaped. The isolate was then identified as a member of genus Dickeya using the Biolog GN microplate. The 16S rRNA, recA, and dnaX sequences of isolate 6165-3 were subsequently determined and deposited in GenBank with accession numbers KM405240, KM405241, and KM405242, sharing 99% (16S rRNA), 100% (recA), and 100% (dnaX) nucleotide identity with those of known D. solani isolates, respectively. By this means, the isolate 6165-3 was identified as D. solani (1,2). To confirm the pathogenicity of the isolate, four plants each of 30-day-old hyacinth, 14-day-old potato, and 60-day-old moth orchid (Phalaenopsis amabilis) were inoculated with suspensions of the isolate with a concentration of 108 CFU/ml in sterile water by stabbing. Plants were incubated in a climate chamber at 28°C during the day and 24°C during the night with a relative humidity of 93% and a photoperiod of 12/12 h. Plants inoculated with sterile water were included as negative controls. After 2 or 3 days, typical symptoms such as water-soaked lesions and soft rot developed around the inoculation point, while the negative controls remained symptomless. Koch's postulates were fulfilled by re-isolating bacteria from lesions, which had identical sequence and morphology characters with the inoculated isolate. This is the first report of intercepted D. solani on hyacinth bulbs imported from the Netherlands into China, indicating that D. solani can spread via hyacinth. Further spread of the pathogen into potato production might lead to immeasurable economic consequences for China. References: (1) P. F. Sarris et al. New Dis. Rep. 24:21, 2011. (2) J. M. van der Wolf et al. Int. J. Syst. Evol. Microbiol. 64:768, 2014.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 452-452 ◽  
Author(s):  
B. R. Lin ◽  
H. F. Shen ◽  
J. N. Zhou ◽  
X. M. Pu ◽  
Z. N. Chen ◽  
...  

Philodendron is a popular foliage plant cultivated in interiorscapes of homes, offices, and malls throughout China. A severe outbreak of a soft rot of Philodendron ‘Con-go’ occurred in Guangzhou, China from 2010 to 2011. The disease was characterized by leaf infections starting as pinpoint spots that are water soaked and yellow to pale brown. The lesions are sometimes surrounded by a diffuse yellow halo. When the humidity is high and temperatures are warm to hot, the spots expand rapidly, becoming slimy, irregular, and sunken with light tan centers, darker brown borders, and diffused yellow margins and may involve the entire leaf in a few days. An invasion of the midrib and larger veins by the causal bacterium often results in advancement into the petiole and stem. A survey of three areas of production of Philodendron ‘Con-go’ (5 ha) in Guangzhou revealed that 91% of the fields were affected at an incidence ranging from 15 to 30%. Of 41 bacterial isolates obtained from lesions, three were selected randomly for further characterization. All strains were gram negative, negative for oxidase and positive for catalase and tryptophanase (indole production), and utilized citrate, tartrate, malonate, glucose, sucrose, fructose, and maltose but not glucopyranoside, trehalose, or palatinose. Biolog analysis (version 4.20.05, Hayward, CA) identified the isolates as Pectobacterium chrysanthemi (SIM 0.804 to 0.914). According to Samson et al. (1), it was renamed as a Dickeya sp. PCR was performed on the 16S rDNA gene with primers 27f and 1495r (3) and 1,423 bp of the 16S rDNA gene (GenBank No. JN709491) showed 99% identity to P. chrysanthemi (GenBank No. AF373202), and 98% to Dickeya dieffenbachiae (GenBank No. JF311644). Additionally, the gyrB gene was amplified with primers gyrB-f1 (5′-atgtcgaattcttatgactcctc-3′) and gyrB-r1 (5′-tcaratatcratattcgcygctttc-3′) designed based on all the submitted gyrB gene sequences of Dickeya spp. The dnaX gene was amplified with primers dnaXf and dnaXr (2). The products were sequenced and phylogeny analyses were performed by means of MEGA 5.05. Results showed that the gyrB and the dnaX genes of the strains were 98% homologous to those of D. dieffenbachiae (GenBank Nos. JF311652 and GQ904757). Therefore, on the basis of phylogenetic trees of the 16S rDNA, gyrB, and dnaX gene sequences, the bacterial isolate named PC1 is related to D. dieffenbachiae (100% bootstrap values). Pathogenicity of each of the three strains on Philodendron ‘Con-go’ was confirmed by injecting 60 50-day-old seedlings each with 0.1 ml of the isolate suspension (108 CFU/ml) into the leaves. Another 60 were injected with sterile water to serve as the control treatment. Plants were enclosed in plastic bags and returned to the greenhouse under 50% shade at 32°C day and 28°C night temperatures with high humidity. After 72 h, all the injected plants started to show symptoms similar to those observed on field plants, but no symptoms appeared on the control plants. The reisolates were identical to the inoculated strains in biochemical characteristics. Bacteria characteristic of the inoculated strains were not reisolated from the control plants. To our knowledge, this is the first report of D. dieffenbachiae causing soft rot of Philodendron ‘Con-go' in China. References: (1) R. Samson et al. Evol. Microbiol. 55:1415, 2005. (2) M. Sławiak et al. Eur. J. Plant Pathol. 125:245, 2009. (3) W. G. Weisbury et al. J. Bacteriol. 173:697, 1991.


Plant Disease ◽  
2021 ◽  
Author(s):  
Maya V. Voronina ◽  
Anna A. Lukianova ◽  
Mikhail M. Shneider ◽  
Aleksei A. Korzhenkov ◽  
Stepan V. Toschakov ◽  
...  

Blackleg and soft rot of potato (Solanum tuberosum) were monitored in the Central European part of Russia within a period of 2012- 2019. Symptoms included decay of tubers, blackening of stem vascular bundles, and partial yellowing of leaves. The disease causes serious potato yield losses in the field and storage. Pectobacterium parmentieri, P. brasiliense, P. versatile (syn. Ca. Pectobacterium maceratum), P. carotovorum, P. atrosepticum, Dickeya dianthicola, and D. solani are considered as main causal agents of soft rot and blackleg disease in Russia (Voronina et al. 2019, Ngoc Ha et al., 2019, Shirshikov et al. 2018, Kornev et al. 2012). Potato plant samples collected in commercial fields in routine plant health assay were used for bacteria isolation on crystal violet pectate agar (CVP) (Helias et al. 2012) as described previously (Voronina et al. 2019). Bacterial colonies producing pitting on CVP were re-isolated and purified on nutrient broth yeast extract medium. DNA of bacterial isolates was extracted, and polymerase chain reaction (PCR) amplifications were performed using gapA primers (Cigna et al. 2017) followed by sequencing. DNA sequence alignment showed that the isolates F099, F100, F106, F109, and F118 were identical (deposited as part of NCBI Ref.Seq. for F109 NZ_RRYS01000004.1, locus KHDHEBDM_RS06360) and grouped together with the type strain Pectobacterium polaris NIBIO1006T (CP017481), a new species described as a potato pathogen (Dees et al. 2017). These strains were negative in diagnostic PCR assays using specific primers Y45/Y46 for the detection of P. atrosepticum, Br1f and L1r for P. brasiliense (Duarte et al. 2004), and ADE1/ADE2 for Dickeya sp. (Nassar et al. 1996). To further validate the identification, strain F109 of P. polaris was selected for genome sequencing. The genome of P. polaris strain F109, (NCBI Reference Sequence NZ_RRYS00000000.1) reveals >99% sequence similarity with type strain P. polaris IPO_1606 (GenBank accession GCA_902143345.1). The strain F109 was deposited to All-Russian Collection of Microorganisms under number VKM V-3420. Thus, the characterization of five isolates provided evidence that a previously unreported pathogen was present in the surveyed fields. The isolates were uniform in genetic and physiological properties; they were gram negative, facultative anaerobes with pectinolytic activity, negative for oxidase, urease, indole production, gelatin liquefaction. All isolates were catalase positive, produced acid from lactose, rhamnose, saccharose, xylose, and trehalose, and were tolerant to 5% NaCl, unable to utilize malonate and citrate. All the isolates grew at 37°C. All isolates caused soft rot symptoms on 10 inoculated potato tubers. They produced typical black leg rot symptoms in young potato plants inoculated with 107 CFU/ml of the pathogen by stem injection and incubated at 25°C for 48 h. The bacteria were re-isolated successfully from symptomatic potato and pathogen confirmed by gapA sequencing to complete Koch’s postulates. To our knowledge, this is the first report of blackleg and soft rot caused by P. polaris on potato in the Russian Federation. According to the data of commercial diagnostic laboratory “PhytoEngineering” (Moscow region), P. polaris occurred in 5% potato seed stocks harvested in 2017-2019 in the Moscow region. This finding may indicate that new Pectobacterium strains have adapted to a diverse environment, which is consistent with widespread distribution of commercial seed potatoes. The author(s) declare no conflict of interest. Funding: This work was supported by Russian Science Foundation grant #16-16-00073.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 989-989 ◽  
Author(s):  
W. Cheon ◽  
Y. H. Jeon

Orostachys japonica (Maxim) A. Berger is an important traditional medicine in Korea. The extract of this plant has antioxidant activity and suppresses cancer cell proliferation (1). From summer through fall of 2012 and 2013, a high incidence (~10% to 30%) of disease outbreaks of all plants characterized by water-soaked lesions and soft rot with a stinky odor was observed in cultivated O. japonica around Uljin (36°59′35.04″N, 126°24′1.51″E), Korea. Water-soaked lesions were first observed on the stem base of plants. Subsequently, the plants collapsed, although the upper portion remained asymptomatic. Thereafter, the lesions expanded rapidly over the entire plant. To isolate potential pathogens from infected leaves, small sections (5 to 10 mm2) were excised from the margins of lesions. Ten bacteria were isolated from ten symptomatic plants. Three representative isolates from different symptomatic plants were used for identification and pathogenicity tests. Isolated bacteria were gram negative, pectolytic on crystal violet pectate agar, nonfluorescent on King's medium B, and elicited a hypersensitive response in tobacco plants. All isolates caused soft rot of potato tubers. These isolates also differed from isolates of Erwinia chrysanthemi (Ech) that they were insensitive to erythromycin and did not produce phosphatase. These isolates differed from known strains of E. carotovora subsp. atroseptica in that they did not produce reducing substances from sucrose (2). Use of the Biolog GN microplate and the Release 4.0 system identified the isolate as Pectobacterium carotovorum subsp. carotovorum with 81.2% similarity. The 16S rRNA of the isolated bacteria was amplified by PCR and sequenced as described by Weisburg et al. (3). A BLAST analysis for sequence similarity of the 16S rRNA region revealed 99% similarity with nucleotide sequences for P. carotovorum subsp. carotovorum isolates (KC790305, KC790280, JF926758, JX196705, and AB680074). The pathogenicity of three bacterial isolates was examined on three 2-year-old O. japonica plants by adding 50 μl of a bacterial suspension containing 108 CFU/ml when wounding the leaves with sterile needles. Ten control plants were inoculated with sterilized water. After inoculation, plants were maintained in a growth chamber at 25°C with relative humidity ranging from 80 to 90%. After 2 to 3 days, tissue discoloration, water-soaked lesions, and soft rot developed around the inoculation point. Severe symptoms of soft rot and darkening developed on leaves of inoculated plants within 3 to 5 days after inoculation. All controls remained healthy during these experiments. The bacterial strains re-isolated from the parts of the leaf showing the symptoms and identified as P. carotovorum subsp. carotovorum on the basis of the biochemical and physiological tests, as well as Biolog system. The results obtained for pathogenicity, Biolog analysis, and molecular data corresponded with those for P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of the presence of P. carotovorum on O. japonica in Korea. References: (1) C.-H. Kim et al. Kor. J. Med. Crop Sci. 11:31, 2003. (2) N. W. Schaad et al. Erwinia Soft Rot Group. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al. eds. American Phytopathological Society, St. Paul. MN, 2001. (3) W. G. Weisburg et al. J. Bacteriol. 173:697, 1991.


Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 760-760 ◽  
Author(s):  
J. N. Zhou ◽  
B. R. Lin ◽  
H. F. Shen ◽  
X. M. Pu ◽  
Z. N. Chen ◽  
...  

Phalaenopsis orchids, originally from tropical Asia, are mainly planted in Thailand, Singapore, Malaysia, the Philippines, and Taiwan and have gained popularity from consumers all over the world. The cultivation area of Phalaenopsis orchids has been rising and large-scale bases have been established in mainland China, especially South China because of suitable environmental conditions. In September 2011, a soft rot of Phalaenopsis aphrodita was found in a Phalaenopsis planting base in Guangzhou with an incidence of ~15%. Infected plants initially showed water-soaked, pale-to-dark brown pinpoint spots on leaves that were sometimes surrounded by a yellow halo. Spots expanded rapidly with rising humidity and temperatures, and in a few days, severely extended over the blade with a light tan color and darker brown border. Lesions decayed with odorous fumes and tissues collapsed with inclusions exuding. The bacterium advanced to the stem and pedicle. Finally, leaves became papery dry and the pedicles lodged. Six diseased samples were collected, and bacteria were isolated from the edge of symptomatic tissues after sterilization in 0.3% NaOCl for 10 min, rinsing in sterile water three times, and placing on nutrient agar for culture. Twelve representative isolates were selected for further characterization. All strains were gram negative, grew at 37°C, were positive for indole production, and utilized malonate, glucose, and sucrose but not glucopyranoside, trehalose, or palatinose. Biolog identification (version 4.20.05, Hayward, CA) was performed and Pectobacterium chrysanthemi (SIM 0.868) was confirmed for the tested isolates (transfer to genus Dickeya). PCR was used to amplify the 16S rDNAgene with primers 27f and 1492r, dnaX gene with primers dnaXf and dnaXr (3), and gyrB gene with primers gyrBf (5′-GAAGGYAAAVTKCATCGTCAGG-3′) and gyrB-r1 (5′-TCARATATCRATATTCGCYGCTTTC-3′) designed on the basis of the published gyrB gene sequences of genus Dickeya. BLASTn was performed online, and phylogeny trees (100% bootstrap values) were created by means of MEGA 5.05 for these gene sequences, respectively. Results commonly showed that the representative tested strain, PA1, was most homologous to Dickeya dieffenbachiae with 98% identity for 16S rDNA(JN940859), 97% for dnaX (JN989971), and 96% for gyrB (JN971031). Thus, we recommend calling this isolate D. dieffenbachiae PA1. Pathogenicity tests were conducted by injecting 10 P. aphrodita seedlings with 100 μl of the bacterial suspension (1 × 108 CFU/ml) and another 10 were injected with 100 μl of sterile water as controls. Plants were inoculated in a greenhouse at 28 to 32°C and 90% relative humidity. Soft rot symptoms were observed after 2 days on the inoculated plants, but not on the control ones. The bacterium was isolated from the lesions and demonstrated identity to the inoculated plant by the 16S rDNA sequence comparison. Previously, similar diseases of P. amabilis were reported in Tangshan, Jiangsu, Zhejiang, and Wuhan and causal agents were identified as Erwinia spp. (2), Pseudomonas grimontii (1), E. chrysanthemi, and E. carotovora subsp. carovora (4). To our knowledge, this is the first report of D. dieffenbachiae causing soft rot disease on P. aphrodita in China. References: (1) X. L. Chu and B. Yang. Acta Phytopathol. Sin. 40:90, 2010. (2) Y. M. Li et al. J. Beijing Agric. Coll. 19:41, 2004. (3) M. Sławiak et al. Eur. J. Plant Pathol. 125:245, 2009. (4) Z. Y. Wu et al. J. Zhejiang For. Coll. 27:635, 2010.


Plant Disease ◽  
1999 ◽  
Vol 83 (5) ◽  
pp. 488-488 ◽  
Author(s):  
R. D. Peters ◽  
M. E. Lee ◽  
C. R. Grau ◽  
S. J. Driscoll ◽  
R. M. Winberg ◽  
...  

Samples of alfalfa (Medicago sativa L.) leaves and stems showing symptoms of inter-veinal chlorosis and purpling, commonly associated with insect feeding, were collected from 8 sites in central and southern Wisconsin in autumn of 1998. Samples were frozen within 24 h of collection. Approximately 0.3 g of plant tissue from each sample was used for total DNA extraction according to the protocol of Zhang et al. (4), with minor modifications in grinding procedures and reagent volumes to optimize results. Nested polymerase chain reaction (PCR) was carried out by amplification of 16S rDNA with the universal primer pairs R16mF2/R16mR1 followed by R16F2n/R16R2 as described by Gunder-sen and Lee (1). Undiluted total sample DNA was used for the first amplification; PCR products were diluted (1:30) in sterile water prior to final amplification. Alfalfa DNA and sterile water were used as negative controls; DNA from phytoplasma causing X-disease in peach (CX) served as a positive control. Fragments of 16S rDNA from putative phytoplasmas amplified by PCR with the primer pair R16F2n/R16R2 were characterized by restriction endonuclease digestion (3). The resulting restriction fragment length polymorphism (RFLP) patterns were compared with patterns for known phytoplasmas described by Lee et al. (3). Products of nested PCR were also purified and sequenced with primers R16F2n/R16R2 and an automated DNA sequencer (ABI 377XL; C. Nicolet, Biotechnology Center, University of Wisconsin-Madison). Of 51 samples of alfalfa assessed, one sample from Evansville, WI, yielded a nested PCR product of the appropriate size (1.2 kb), indicating the presence of phytoplasma. Digestion of this product with various restriction enzymes produced RFLP patterns that were identical to those for phytoplasmas in the aster yellows phytoplasma subgroup 16SrI-A (3). Alignment of the DNA sequence of the nested PCR product from the positive sample with sequences found in the GenBank sequence data base (National Center for Biotechnology Information, Bethesda, MD) with the BLAST sequence similarity function confirmed this result. Although other phytoplasma strains (particularly those causing witches'-broom) have been reported to infect alfalfa (2), this is the first report of the presence of the aster yellows phytoplasma in the alfalfa crop. Vectors involved in transmission and the potential agronomic impacts of aster yellows phytoplasma in alfalfa are topics of current investigation. References: (1) D. E. Gundersen and I.-M. Lee. Phytopathol. Mediterr. 35:144, 1996. (2) A.-H. Khadhair et al. Microbiol. Res. 152:269, 1997. (3) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (4) Y.-P. Zhang et al. J. Virol. Methods 71:45, 1998.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 398-403 ◽  
Author(s):  
Dimas Mejía-Sánchez ◽  
Sergio Aranda-Ocampo ◽  
Cristian Nava-Díaz ◽  
Daniel Teliz-Ortiz ◽  
Manuel Livera-Muñoz ◽  
...  

Neobuxbaumia tetetzo (Coulter) Backeberg (tetecho) is a columnar cactus endemic to Mexico. Tetecho plants, flowers, fruits, and seeds play an important role in the semiarid ecosystem, as they serve as a refuge and food for insects, bats, and birds, and are widely used by ethnic groups since pre-Hispanic times. Tetecho is affected by a soft rot that damages the whole plant and causes its fall and disintegration. Eight bacterial colonies of similar morphology were isolated from plants showing soft rot and inoculated in healthy tetecho plants, reproducing typical symptoms of soft rot 9 days after inoculation. Ten representative isolates were selected for phenotypic and genetic identification using 16s rDNA, IGS 16S-23S rDNA, and rpoS genes and for pathogenicity tests on several members of the cactus family and other plants. Based on the results, these bacterial isolates were identified as Pectobacterium carotovorum subsp. brasiliense. Inoculation of this bacteria caused soft rot in different cacti, fruits, leaves, and roots of other plants. This is the first report of the subspecies brasiliense of P. carotovorum causing soft rot and death in cacti in the world and the first report of this subspecies in Mexico.


Plant Disease ◽  
2021 ◽  
Author(s):  
Aiguo Zhou ◽  
Jingbai Nie ◽  
Yanli Tian ◽  
Jiacheng Chuan ◽  
Baishi Hu ◽  
...  

Dickeya fangzhongdai was originally described as the causal agent of bleeding canker of pear tree in China. Recently, D. fangzhongdai was isolated and identified as the causal agent of soft rot in an orchid plant purchased in a local supermarket in Prince Edward Island, Canada. A water-soaked dark green spot on the leaf surface was observed and later became larger soft rot symptom. The origin of the orchid plants was traced back to a producer in Ontario, Canada who propagated them from with cuttings originally imported from the Netherlands and Taiwan. Bacterial isolations were made from a soft rot lesion on an orchid leaf by surface sterilization of small pieces of marginal tissue of the diseased leaf in 70% alcohol. The small pieces of leaf tissue were then washed three time using sterile water, and immersed in drops of sterile water. Bacterial streaming was observed under the microscope and non-fluorescing bacterial colonies were isolated on King’s B and casamino acid-peptone-glucose agar plates and purified as isolates 908, 909, 910 and 911. The DNA samples were extracted from the four isolates, as well as the diseased leaf tissue, and tested by using a qPCR assay with the specific primer/probe set (DfF/DfR/DfP) for D. fangzhongdai (Tian et al. 2020). The assay yielded PCR amplicons of 135 bp with a melting temperature of 86.5±0.6 °C as did two control reactions using genomic DNA from D. fangzhongdai strains JS5T and QZH3 originally isolated in China, providing presumptive identification of the orchid isolates as D. fangzhongdai. To fulfill Koch’s postulates, freshly purchased healthy orchid plants (n=4) were inoculated by leaf injection with the bacterial isolates obtained in this study and strains JS5 T and QZH3 at ~107 CFU/ml. Three leaves of the same side of the plants were inoculated with the same strains as triplicates. Sterile water was used as the negative control. Inoculated plants were incubated in a growth chamber with a 16 h photoperiod at 23 °C. Water soaked lesions developed in 3-5 days after inoculation followed by soft rotting in leaves inoculated with the new bacterial strains from orchid plants while strain QZH3 caused soft rot in 10 days after inoculation (Fig. S1). The non-fluorescing bacteria on King’s B plates with colony morphology similar to those inoculated were re-isolated from the inoculated leaves and confirmed to be D. fangzhongdai by qPCR. Phylogenetic analysis of the assembled 16S rRNA sequence of isolate 908 (GenBank accession number: MT984340), together with GenBank data of all Dickeya spp. and some Pectobacterium spp, using neighbor-joining (NJ) method inferred with MEGA X software (Kumar et al. 2018) showed that isolate 908 clustered with strains JS5T and QZH3 at a phylogenetic distance of 0.0007. This clearly indicated that isolate 908 and JS5T and QZH3 belong to the same genus. Species-level identification of isolate 908 was achieved by genome sequencing and analysis based on average nucleotide identity (ANI). Genomic DNA of isolate 908 was sequenced with Illumina MiSeq to provide approximately 180X genome coverage. After quality checking using FastQC (Andrews 2010), de-novo assembly was performed with VelvetOptimiser v2.2.6 (Zerbino and Birney 2008). The draft genome size of strain 908 was 4,938,027 bp consisting of 76 contigs with 56.8% G+C content and 63,801 bp as N50. The draft genome was checked for misassembled fragments using QUAST v5.0.2 (Gurevich et al. 2013) and found to be of good quality. The draft genome sequence is deposited in GenBank under the accession number of JADCNJ000000000. The draft genome sequence of strain 908 was compared to that of D. fangzhongdai JS5T type strain genome using FastANI v1.2 (Jain et al. 2018) resulting in an ANI value of 98.9%, which is above the 95% cut-off for the same species. Previously, it was reported that D. fangzhongdai caused soft rot in orchid in Europe (Alič et al. 2018) and in onions in New York (Ma et al. 2020). The difference in virulence among D. fangzhongdai strains warrants further investigation and their pathogenicity on potato is being investigated to evaluate any threat to the potato industry. To our knowledge, this is the first report of D. fangzhongdai causing soft rot disease on orchids in Canada and North America.


Sign in / Sign up

Export Citation Format

Share Document