scholarly journals First Report of Pectobacterium polaris Causing Soft Rot and Black Leg of Potato in Russia

Plant Disease ◽  
2021 ◽  
Author(s):  
Maya V. Voronina ◽  
Anna A. Lukianova ◽  
Mikhail M. Shneider ◽  
Aleksei A. Korzhenkov ◽  
Stepan V. Toschakov ◽  
...  

Blackleg and soft rot of potato (Solanum tuberosum) were monitored in the Central European part of Russia within a period of 2012- 2019. Symptoms included decay of tubers, blackening of stem vascular bundles, and partial yellowing of leaves. The disease causes serious potato yield losses in the field and storage. Pectobacterium parmentieri, P. brasiliense, P. versatile (syn. Ca. Pectobacterium maceratum), P. carotovorum, P. atrosepticum, Dickeya dianthicola, and D. solani are considered as main causal agents of soft rot and blackleg disease in Russia (Voronina et al. 2019, Ngoc Ha et al., 2019, Shirshikov et al. 2018, Kornev et al. 2012). Potato plant samples collected in commercial fields in routine plant health assay were used for bacteria isolation on crystal violet pectate agar (CVP) (Helias et al. 2012) as described previously (Voronina et al. 2019). Bacterial colonies producing pitting on CVP were re-isolated and purified on nutrient broth yeast extract medium. DNA of bacterial isolates was extracted, and polymerase chain reaction (PCR) amplifications were performed using gapA primers (Cigna et al. 2017) followed by sequencing. DNA sequence alignment showed that the isolates F099, F100, F106, F109, and F118 were identical (deposited as part of NCBI Ref.Seq. for F109 NZ_RRYS01000004.1, locus KHDHEBDM_RS06360) and grouped together with the type strain Pectobacterium polaris NIBIO1006T (CP017481), a new species described as a potato pathogen (Dees et al. 2017). These strains were negative in diagnostic PCR assays using specific primers Y45/Y46 for the detection of P. atrosepticum, Br1f and L1r for P. brasiliense (Duarte et al. 2004), and ADE1/ADE2 for Dickeya sp. (Nassar et al. 1996). To further validate the identification, strain F109 of P. polaris was selected for genome sequencing. The genome of P. polaris strain F109, (NCBI Reference Sequence NZ_RRYS00000000.1) reveals >99% sequence similarity with type strain P. polaris IPO_1606 (GenBank accession GCA_902143345.1). The strain F109 was deposited to All-Russian Collection of Microorganisms under number VKM V-3420. Thus, the characterization of five isolates provided evidence that a previously unreported pathogen was present in the surveyed fields. The isolates were uniform in genetic and physiological properties; they were gram negative, facultative anaerobes with pectinolytic activity, negative for oxidase, urease, indole production, gelatin liquefaction. All isolates were catalase positive, produced acid from lactose, rhamnose, saccharose, xylose, and trehalose, and were tolerant to 5% NaCl, unable to utilize malonate and citrate. All the isolates grew at 37°C. All isolates caused soft rot symptoms on 10 inoculated potato tubers. They produced typical black leg rot symptoms in young potato plants inoculated with 107 CFU/ml of the pathogen by stem injection and incubated at 25°C for 48 h. The bacteria were re-isolated successfully from symptomatic potato and pathogen confirmed by gapA sequencing to complete Koch’s postulates. To our knowledge, this is the first report of blackleg and soft rot caused by P. polaris on potato in the Russian Federation. According to the data of commercial diagnostic laboratory “PhytoEngineering” (Moscow region), P. polaris occurred in 5% potato seed stocks harvested in 2017-2019 in the Moscow region. This finding may indicate that new Pectobacterium strains have adapted to a diverse environment, which is consistent with widespread distribution of commercial seed potatoes. The author(s) declare no conflict of interest. Funding: This work was supported by Russian Science Foundation grant #16-16-00073.

2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Yeshitila Degefu

Recent methodological developments have uncovered the etiological diversity of the potato blackleg and soft rot Pectobacteriaceae. At least five species in the genera Dickeya and Pectobacterium have been confirmed to cause blackleg on potatoes in Finland. The bacteria are seed borne and remain latent in the tuber until conditions favourable for growth, multiplication and infection prevail. Tubers could be infected by one or more of these species. This short communication is based on the results of molecular detection data collected for more than 14 years from potato seed lots produced in Finland. Diagnostic PCR assay specific to Dickeya solani, Pectobacterium atrosepticum, Pectobacterium carotovorum, P. brasiliense and P. parmentieri revealed that potatoes are infected by one or more of these species; it also revealed that single species infection is more common than multiple colonization. An event of simultaneous occurrences of different strains from the Pectobacterium species appears to be more frequent than that observed between Dickeya and Pectobacterium species. The absence of co-occurrence of Dickeya solani and Pectobacterium atrosepticum is intriguing.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 989-989 ◽  
Author(s):  
W. Cheon ◽  
Y. H. Jeon

Orostachys japonica (Maxim) A. Berger is an important traditional medicine in Korea. The extract of this plant has antioxidant activity and suppresses cancer cell proliferation (1). From summer through fall of 2012 and 2013, a high incidence (~10% to 30%) of disease outbreaks of all plants characterized by water-soaked lesions and soft rot with a stinky odor was observed in cultivated O. japonica around Uljin (36°59′35.04″N, 126°24′1.51″E), Korea. Water-soaked lesions were first observed on the stem base of plants. Subsequently, the plants collapsed, although the upper portion remained asymptomatic. Thereafter, the lesions expanded rapidly over the entire plant. To isolate potential pathogens from infected leaves, small sections (5 to 10 mm2) were excised from the margins of lesions. Ten bacteria were isolated from ten symptomatic plants. Three representative isolates from different symptomatic plants were used for identification and pathogenicity tests. Isolated bacteria were gram negative, pectolytic on crystal violet pectate agar, nonfluorescent on King's medium B, and elicited a hypersensitive response in tobacco plants. All isolates caused soft rot of potato tubers. These isolates also differed from isolates of Erwinia chrysanthemi (Ech) that they were insensitive to erythromycin and did not produce phosphatase. These isolates differed from known strains of E. carotovora subsp. atroseptica in that they did not produce reducing substances from sucrose (2). Use of the Biolog GN microplate and the Release 4.0 system identified the isolate as Pectobacterium carotovorum subsp. carotovorum with 81.2% similarity. The 16S rRNA of the isolated bacteria was amplified by PCR and sequenced as described by Weisburg et al. (3). A BLAST analysis for sequence similarity of the 16S rRNA region revealed 99% similarity with nucleotide sequences for P. carotovorum subsp. carotovorum isolates (KC790305, KC790280, JF926758, JX196705, and AB680074). The pathogenicity of three bacterial isolates was examined on three 2-year-old O. japonica plants by adding 50 μl of a bacterial suspension containing 108 CFU/ml when wounding the leaves with sterile needles. Ten control plants were inoculated with sterilized water. After inoculation, plants were maintained in a growth chamber at 25°C with relative humidity ranging from 80 to 90%. After 2 to 3 days, tissue discoloration, water-soaked lesions, and soft rot developed around the inoculation point. Severe symptoms of soft rot and darkening developed on leaves of inoculated plants within 3 to 5 days after inoculation. All controls remained healthy during these experiments. The bacterial strains re-isolated from the parts of the leaf showing the symptoms and identified as P. carotovorum subsp. carotovorum on the basis of the biochemical and physiological tests, as well as Biolog system. The results obtained for pathogenicity, Biolog analysis, and molecular data corresponded with those for P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of the presence of P. carotovorum on O. japonica in Korea. References: (1) C.-H. Kim et al. Kor. J. Med. Crop Sci. 11:31, 2003. (2) N. W. Schaad et al. Erwinia Soft Rot Group. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al. eds. American Phytopathological Society, St. Paul. MN, 2001. (3) W. G. Weisburg et al. J. Bacteriol. 173:697, 1991.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 141-141 ◽  
Author(s):  
A. Végh ◽  
M. Hevesi ◽  
Zs. Némethy ◽  
L. Palkovics

In April 2011, typical bacterial spot symptoms were observed on sweet basil plantlets (Ocimum basilicum L.) in a supermarket in Budapest, Hungary. Affected plants had dark brown-to-black lesions on the cotyledons. Spots on the leaves were first water soaked and then became necrotic and progressed inward from the margins. Symptoms were similar to those reported by Little et al. (3) on basil affected by Pseudomonas viridiflava. Bacteria consistently isolated from leaf lesions formed mucoid colonies with a green fluorescent pigment on King's B medium. Strains were gram negative. In LOPAT (levan-oxidase-potato rot-arginine dihydrolase-tobacco hypersensitivity) tests (2), all induced a hypersensitive reaction (HR) in tobacco (Nicotiana tabacum L. cv. White Burley) leaves (1), caused soft rot of potato tuber slices, and were negative for levan, oxidase, and arginine dihydrolase. Biochemical tests, API 20NE and API 50 CH (Biomérieux, Marcy l'Etoile, France), were also used for identification. The pathogenicity of three isolates was tested twice by injecting 20-day-old healthy basil plants with a bacterial suspension (107 CFU/ml). Controls were injected with sterile distilled water. Plants were kept at 25 to 28°C and 80 to 100% relative humidity. Forty-eight hours after inoculation, dark brown-to-black lesions were observed only on inoculated plants. The bacterium was reisolated from lesions of all plants tested, fulfilling Koch's postulates. No lesions were observed on controls. To identify the pathogen, a PCR technique was used. The 16SrDNA region was amplified with general bacterial primer pair (63f forward and 1389r reverse) (4) then the PCR products were cloned into Escherichia coli DH5α cells and a recombinant plasmid was sequenced by M13 forward and reverse primers. The sequence was deposited in GenBank (Accession No. HE585219). On the basis of the symptoms, biochemical tests, and 16SrDNA sequence homology (99% sequence similarity with a number of P. viridiflava isolates), the pathogen was identified as P. viridiflava. To our knowledge, this is the first report of bacterial leaf spot of basil in Hungary, which can seriously affect the basil production. References: (1) Z. Klement. Nature 199:299, 1963. (2) R. A. Lelliot et al. Appl. Bacteriol. 29:470, 1966. (3) E. L. Little et al. Plant Dis. 78:831, 1994. (4) A. M. Osborn et al. Environ. Microbiol. 2:39, 2000.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 640-640 ◽  
Author(s):  
B. R. Lin ◽  
H. F. Shen ◽  
X. M. Pu ◽  
X. S. Tian ◽  
W. J. Zhao ◽  
...  

Banana is one of the most important fruit crops grown in China (2). A severe outbreak of a soft rot of banana occurred in Guangzhou, China from 2009 to 2010. The disease was characterized by an odorous soft rot of the center of the rhizome. The rot progressed up the pseudostem, destroying the growing point and causing internal decay and often accompanied by vascular discoloration. Yellowing and wilting of the leaves were also characteristic symptoms. A survey of three areas of production of Musa sapientum (cv. ABB) covering 10 ha in Guangzhou revealed that 82% of the fields were affected at an incidence ranging from 20 to 40%. Forty-five bacterial isolates were obtained from lesions on plants sampled from these fields by surface-sterilizing symptomatic tissue in 0.3% NaOCl for 10 min, rinsing the tissue sections three times in sterile water, and plating the sections on nutrient agar. Three representative isolates selected randomly were all gram negative, caused a soft rot of potato disks, utilized malonate, tested positive for phosphatase production, and tested negative for acid production from palatinose, glucopyranoside, and trehalose. A Biolog similarity index of 0.803 indicated that the three isolates had a high similarity to the Biolog reference strain of Pectobacterium chrysanthemi (Version 4.2, Biolog Inc., Hayward, CA). The 16S rDNA sequence (GenBank Accession No. 1321085) of each of the three isolates was determined (1). When compared with sequences in GenBank, the highest degree of sequence similarity was with P. chrysanthemi AF373199. On the basis of a phylogenetic tree of the sequences, the three bacterial isolates are related to Pectobacterium (100% bootstrap values). On the basis of two diagnostic methods, the three isolates were identified as P. chrysanthemi. However, according to Samson et al. (3), they are a Dickeya sp. Additional genetic comparisons with type strains will be needed for the strains to be assigned to a known species of Dickeya. Pathogenicity of each of the three strains on M. sapientum (cv. ABB) was confirmed by injecting 60 40-day-old seedlings each with 5 ml of a suspension of the isolate (108 CFU/ml) into the rhizome. Sixty plants of the same cultivar injected with sterile water served as the control treatment. After 48 h, yellowing and wilting of the leaves, similar to symptoms observed on field plants, were observed on all inoculated seedlings for each of the three bacterial strains. There were no symptoms on the control plants. Koch's postulates were fulfilled by reisolating bacteria from lesions on the leaves of inoculated seedlings. The reisolates were identical to the inoculated strains in biochemical characteristics. Bacteria characteristic of the inoculated strains were not reisolated from the control plants. To our knowledge, this is the first report of a Dickeya sp. causing soft rot of banana in mainland China. References: (1) W. S. Kaneshiro et al. Plant Dis. 92:1444, 2008. (2) Y. P. Ke et al. China Trop. Agric. 1:14, 2008. (3) R. Samson et al. Evol. Microbiol. 55:1415, 2005.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2667-2667 ◽  
Author(s):  
N. Zlatković ◽  
A. Prokić ◽  
K. Gašić ◽  
N. Kuzmanović ◽  
M. Ivanović ◽  
...  

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1048-1048 ◽  
Author(s):  
M. Han ◽  
M. N. Choi ◽  
H. R. Lee ◽  
E. J. Park

2011 ◽  
Vol 61 (4) ◽  
pp. 916-925 ◽  
Author(s):  
Elena Gridneva ◽  
Elena Chernousova ◽  
Galina Dubinina ◽  
Vladimir Akimov ◽  
Jan Kuever ◽  
...  

Seven strains of the genus Sphaerotilus were obtained from natural thermal sulfide (strains D-501T, D-502, D-504, D-505 and D-507) and low-temperature ferrous (strain HST) springs and from an activated sludge system (strain D-380). These Sphaerotilus isolates and strains of Sphaerotilus natans obtained from the DSMZ (S. natans DSM 6575T, DSM 565 and DSM 566) were studied using a polyphasic taxonomic approach. All strains had Q-8 as the major quinone and C16 : 1ω7, C16 : 0 and C18 : 1ω7 as the major fatty acids. The DNA–DNA hybridization results and 16S rRNA, hsp60 and gyrB gene sequencing experiments showed that isolates D-501T, D-502, D-504, D-505, D-507 and D-380 were closely related to the type strain of S. natans DSM 6575T. However, strains D-501T, D-502, D-504, D-505 and D-507 significantly differed from the heterotrophic strain S. natans DSM 6575T by their capability for lithotrophic growth with reduced sulfur compounds as an electron donor for energy conservation and some other phenotypic features. For this reason, strains D-501T, D-502, D-504, D-505 and D-507 merit a separate taxonomic classification at the subspecies level. The name Sphaerotilus natans subsp. sulfidivorans subsp. nov. (type strain D-501T = DSM 22545T = VKM B-2573T) is proposed. The subspecies Sphaerotilus natans subsp. natans subsp. nov. is automatically created as a result of this proposal. Strain D-380 was phenotypically closely related to S. natans DSM 6575T. Strains D-380 and S. natans DSM 6575T were assigned to the subspecies Sphaerotilus natans subsp. natans subsp. nov. (type strain DSM 6575T = ATCC 13338T). The 16S rRNA, hsp60 and gyrB gene sequences obtained for strains HST and DSM 565 showed very low sequence similarity values of 97.3 %, 89.7 % and 88.4 %, respectively, with S. natans DSM 6575T. Strain HST shared 99 % DNA–DNA relatedness with strain


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2241-2247 ◽  
Author(s):  
Judy Kolberg ◽  
Hans-Jürgen Busse ◽  
Thomas Wilke ◽  
Patrick Schubert ◽  
Peter Kämpfer ◽  
...  

An orange-pigmented, Gram-staining-negative, rod-shaped bacterium, designated 96_Hippo_TS_3/13T was isolated from the brood pouch of a diseased seahorse male of the species Hippocampus barbouri from the animal facility of the University of Giessen, Germany. Phylogenetic analyses based on the nearly full-length 16S rRNA gene sequence placed strain 96_Hippo_TS_3/13T into the monophyletic cluster of the genus Mesonia within the family Flavobacteriaceae. However, the strain shared only 92.2–93.8 % sequence similarity to type strains of species of the genus Mesonia, with highest sequence similarity to the type strain of Mesonia aquimarina. Cellular fatty acid analysis showed a Mesonia-typical fatty acid profile including several branched and hydroxyl fatty acids with highest amounts of iso-C15 : 0 (40.9 %) followed by iso-C17 : 0 3-OH (14.8 %). In the polyamine pattern, sym-homospermidine was predominant. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The quinone system contained exclusively menaquinone MK-6. The only identified compound in the polar lipid profile was phosphatidylethanolamine present in major amounts. Additionally, major amounts of an unidentified aminolipid and two unidentified lipids not containing a phosphate group, an amino group or a sugar residue were detected. The genomic G+C content of strain 96_Hippo_TS_3/13T was 30 mol%. Based on genotypic, chemotaxonomic and physiological characterizations we propose a novel species of the genus Mesonia, Mesonia hippocampi sp. nov., with strain 96_Hippo_TS_3/13T ( = CIP 110839T =  LMG 28572T = CCM 8557T) as the type strain. An emended description of the genus Mesonia is also provided.


Sign in / Sign up

Export Citation Format

Share Document