scholarly journals Relationships Among Wilt-Inducing Isolates of Fusarium oxysporum from Sweetpotato and Tobacco

Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 530-536 ◽  
Author(s):  
C. A. Clark ◽  
J-W. Hyun ◽  
M. W. Hoy

Thirty-five isolates of Fusarium oxysporum obtained from diseased sweetpotato or tobacco were compared for pathogenicity on two cultivars each of sweetpotato and tobacco, by random amplified polymorphic DNA (RAPD) profiles, and by vegetative compatibility group (VCG) analysis. Analysis of RAPD profiles revealed five clusters of isolates that corresponded to patterns of pathogenicity. One cluster of isolates, designated as F. oxysporum f. sp. nicotianae, induced severe wilting on both tobacco cultivars but varied from weakly to highly aggressive on the sweetpotato cultivars. Four of the 16 isolates from this group were originally isolated from sweetpotato, and 1 isolate caused severe disease on both crops. Three clusters included isolates from sweetpotato that were virulent on Porto Rico, caused little or no disease on Beauregard and burley tobacco (cv. Kentucky 5), and did not cause wilt on flue-cured tobacco (cv. Gold Dollar). These isolates were designated as race 0 of F. oxysporum f. sp. batatas. Isolates obtained from sweetpotato from California clustered separately from other sweetpotato isolates and the tobacco isolates. They differed from other sweetpotato isolates in being virulent on Beauregard and are proposed as a new race 1 of F. oxysporum f. sp. batatas. VCG analysis was of limited value with the isolates in this study because many isolates were self-incompatible. In each case, all members of a VCG fell within the same cluster defined by RAPDs. This study demonstrated that F. oxysporum from at least three genetically distinct lineages can cause Fusarium wilt on sweetpotato, and that the host ranges of F. oxysporum f. sp. batatas and F. oxysporum f. sp. nicotianae overlap and include plants from two different families.

Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 645-649 ◽  
Author(s):  
D. J. Vakalounakis ◽  
Z. Wang ◽  
G. A. Fragkiadakis ◽  
G. N. Skaracis ◽  
D.-B. Li

Thirty-four isolates of Fusarium oxysporum, obtained in China from cucumber plants showing either Fusarium wilt (F. oxysporum f. sp. cucumerinum) or root and stem rot (F. oxysporum f. sp. radicis-cucumerinum) symptoms, were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Of these, 23 isolates were identified by pathogenicity as F. oxysporum f. sp. cucumerinum, and one as F. oxysporum f. sp. radicis-cucumerinum, while 10 isolates were avirulent on cucumber, melon, sponge gourd, and pumpkin. The Chinese isolates of F. oxysporum f. sp. cucumerinum were assigned to RAPD groups III and XXI and to vegetative compatibility group (VCG) 0183, four new VCGs, 0184 to 0187, and a single-member VCG included in the artificial VCG 018-. The Chinese isolate of F. oxysporum f. sp. radicis-cucumerinum was assigned to RAPD group I and bridging VCG 0260/0261. The occurrence of F. oxysporum f. sp. radicis-cucumerinum on cucumber is reported for the first time in China.


Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 237-240 ◽  
Author(s):  
Matias Pasquali ◽  
Flavia Dematheis ◽  
Giovanna Gilardi ◽  
Maria Lodovica Gullino ◽  
Angelo Garibaldi

Fusarium oxysporum f. sp. lactucae, the causal agent of Fusarium wilt of lettuce, has been reported in three continents in the last 10 years. Forty-seven isolates obtained from infected plants and seed in Italy, the United States, Japan, and Taiwan were evaluated for pathogenicity and vegetative compatibility. Chlorate-resistant, nitrate-nonutilizing mutants were used to determine genetic relatedness among isolates from different locations. Using the vegetative compatibility group (VCG) approach, all Italian and American isolates, type 2 Taiwanese isolates, and a Japanese race 1 were assigned to the major VCG 0300. Taiwanese isolates type 1 were assigned to VCG 0301. The hypothesis that propagules of Fusarium oxysporum f. sp. lactucae that caused epidemics on lettuce in 2001-02 in Italian fields might have spread via import and use of contaminated seeds is discussed.


1991 ◽  
Vol 39 (2) ◽  
pp. 161 ◽  
Author(s):  
NY Moore ◽  
PA Hargreaves ◽  
KG Pegg ◽  
JAG Irwin

The production of volatiles on steamed rice by Australian isolates of Fusarium oxysporum f. sp. cubense correlated well with race and vegetative compatibility group (VCG). All race 4 isolates (VCGs 0120, 0129) produced distinctive volatile odours which gave characteristic gas chromatograms where the num- ber of peaks equated to VCG. Race 1 (VCGs 0124, 0125) and race 2 (VCG 0128) isolates, as well as non-pathogenic isolates of F. oxysporum from the banana rhizosphere, did not produce detectable volatiles and gave chromatograms without significant peaks.


2007 ◽  
Vol 97 (4) ◽  
pp. 461-469 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts

Eighty-eight isolates of Fusarium oxysporum f. sp. niveum, collected from wilted watermelon plants and infested soil in Maryland and Dela-ware, were characterized by cross pathogenicity to muskmelon, race, and vegetative compatibility. Four isolates (4.5%) were moderately pathogenic to ≥2 of 18 muskmelon cultivars in a greenhouse test, and one representative isolate also was slightly pathogenic in field microplots. The four isolates all were designated as race 2, and were in vegetative compatibility group (VCG) 0082. Of the 74 isolates to which a VCG could be assigned, 41 were in VCG 0080, the VCG distributed most widely; 27 were in VCG 0082, and were distributed in half of the 20 watermelon fields surveyed; and 6 were in the newly described VCG 0083, and were restricted to three fields. Among the isolates in VCG 0080, 8 were designated as race 0, 21 as race 1, and 12 as race 2. Of the isolates in VCG 0082, 6 were designated as race 0, 11 as race 1, and 10 as race 2. All isolates in VCG 0083 were designated as race 2. Isolates from more than one race within the same VCG or isolates from more than one VCG were recovered from single plants and fields. No differences in aggressiveness on differential watermelon cultivars were observed among isolates from different VCGs of the same race. A diverse association between virulence and VCG throughout the Mid-Atlantic region suggests that the pathotypes of F. oxysporum f. sp. niveum may be of local origin or at least long existent in the region.


Plant Disease ◽  
2000 ◽  
Vol 84 (3) ◽  
pp. 231-234 ◽  
Author(s):  
W. Schreuder ◽  
S. C. Lamprecht ◽  
G. Holz

Isolates of Fusarium oxysporum f. sp. melonis (72 total) obtained from 30 fields in 17 melonproducing regions in South Africa were race typed, using differential cvs. CM 17187, Doublon, Perlita, and Topmark, and grouped on the basis of vegetative compatibility. Fifty-four isolates were identified as race 0, eight as race 1, and ten as race 2. Race 0 occurred in 15 of 17 regions, whereas race 1 was sporadically recovered. Race 2 was obtained from only four fields located in one geographic region. Perlita plants (carrying the gene Fom3) inoculated with local isolates of races 0 and 2 and reference isolates of race 0 became stunted, and their leaves became yellow, thickened, and brittle. Using two inoculation methods, similar symptoms were induced by reference and local isolates of race 0 on Perlita seedlings. The results indicated that Fom3 in Perlita confers a tolerant reaction compared with the resistant reaction of gene Fom1 in Doublon and, therefore, should not be used alone in race determination tests. All isolates belonged to vegetative compatibility group 0134, indicating a high degree of genetic homogeneity among the South African F. oxysporum f. sp. melonis population.


1992 ◽  
Vol 70 (6) ◽  
pp. 1211-1217 ◽  
Author(s):  
T. R. Gordon ◽  
D. Okamoto

Two hundred isolates of Fusarium oxysporum, 100 from each of two different locations, were collected from agricultural field soils in the San Joaquin Valley of California. These isolates comprised 39 different vegetative compatibility groups. Based on the frequency distribution of vegetative compatibility groups, populations of F. oxysporum at the two collection sites were different. At least one isolate from each vegetative compatibility group was examined for polymorphisms in mitochondrial DNA. A total of 41 differences in mitochondrial DNA were identified, each of which was treated as a character and scored as present or absent in each strain. There were 11 unique combinations (haplotypes) of the 41 characters. Three mitochondrial DNA haplotypes were common to both sites and the remaining eight occurred at only one of the two sites. Isolates in the same vegetative compatibility group were always associated with the same mitochondrial DNA haplotype. Many isolates in different vegetative compatibility groups also shared a common mitochondrial DNA haplotype. Fusarium oxysporum f.sp. melonis, cause of Fusarium wilt of muskmelon, was associated with the same mitochondrial DNA haplotype as eight vegetative compatibility groups of F. oxysporum that were not pathogenic to muskmelon. This result may indicate that either the pathogen was a recent derivative of nonpathogenic strains at the same location or avirulent strains have been derived from the pathogen. Key words: anastomosis, fungi, heterokaryon, Fusarium wilt.


1999 ◽  
Vol 89 (2) ◽  
pp. 161-168 ◽  
Author(s):  
D. J. Vakalounakis ◽  
G. A. Fragkiadakis

A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.


Agrikultura ◽  
2016 ◽  
Vol 27 (3) ◽  
Author(s):  
Sri Sri Hartati ◽  
Ummu Salamah Rustiani ◽  
Lindung Tri Puspasari ◽  
Wawan Kurniawan

ABSTRACTVegetatif compatibility of Fusarium oxysporum on various hostsMany strains or race of Fusarium oxysporum can be grouped based on compatibility reproduction from a variety of different strains called Vegetative Compatibility Group (VCG). This study was aimed to determine how the grouping of several isolates of F. oxysporum and grouping of several hosts of the fungus by vegetative compatibility group. Fusarium oxysporum isolated from chickpea plants that showed symptoms of fusarium wilt. The isolates of F. oxysporum of chili and tomatoes obtained from the culture collections of Mycology Laboratory of IPB. Stages of vegetative compatibility testing assayed through recovery of nit mutants, the identification of phenotype of nit mutant, and complementation test. There are 29 mutants isolated from the isolates of F. oxysporum. Nit1 mutant was obtained from all isolates of beans, tomatoes and peppers. NitM and Nit3 mutant isolates were obtained from chickpea 4 and chili sequentially. Two VCG and one single self compatibility (SSC) were assayed from isolates of F. oxysporum based on complementation testing.Keywords: Beans, Fusarium wilt, Nit mutant, SSC, VCGABSTRAKJamur Fusarium oxysporum memiliki banyak forma spesialis dan ras. Jamur ini dapat dikelompokkan berdasarkan kompatibilitas reproduksi dari berbagai strain yang berbeda disebut dengan vegetative compatibility group (VCG). Penelitian ini bertujuan untuk mengetahui cara pengelompokkan F. oxysporum dan pengelompokkan jamur tersebut dari beberapa inang berdasarkan kelompok kompatibilitas vegetatifnya. Isolasi F. oxysporum dilakukan dari tanaman kacang panjang yang menunjukkan gejala layu fusarium. Isolat F. oxysporum dari cabai dan tomat berasal dari koleksi Laboratorium Mikologi IPB. Tahapan pengujian kompatibilitas vegetatif melalui pembiakan nit mutan, identifikasi fenotipe nit mutan, dan pengujian komplementasi. Isolasi mutan F. oxysporum didapatkan 29 mutan. Mutan nit1 didapatkan dari semua isolat yang diperoleh dari semua inang yang berbeda yaitu kacang panjang, tomat dan cabai. Mutan nitM hanya didapatkan dari isolat kacang panjang 4 dan mutan nit3 hanya didapatkan dari isolat cabai. Berdasarkan uji komplementasi F. oxysporum yang diuji terdiri dari dua VCG dan satu single self compatibility (SSC).Kata Kunci: Kacang panjang, Layu fusarium, Nit mutant, SSC, VCG


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1095-1095 ◽  
Author(s):  
B. J. Gwynne ◽  
T. R. Gordon ◽  
R. M. Davis

In 1996, cantaloupe (Cucumis melo L. cv. Durango) vines in two fields exhibited wilt, vascular discoloration, and necrotic streaks on the stems. Fusarium oxysporum Schlechtend.:Fr. was isolated from the stems of vines from both fields. One isolate from each field was compared with known isolates of F. oxysporum f. sp. melonis (Leach & Currence) W.C. Snyder & H.N. Hansen races 1 and 2 in a differential host range experiment in the greenhouse. Three-week-old seedlings were root-dip inoculated with monoconidial isolates at a concentration of 5 × 105 spores per ml. Control plants were dipped in water. In two experiments, the test isolates killed the susceptible varieties Top Mark and Magnum .45 and the race 2 resistant varieties Durango, Gold Mine, and Perlita FR. Seedlings of variety Charentais with the Fom2 gene conferring resistance to race 1 were resistant to both test isolates. It was determined that both of these isolates are associated with vegetative compatibility group (VCG) 0134 (1). This is the first report of race 1 and VCG 0134 of F. oxysporum f. sp. melonis causing Fusarium wilt of muskmelon in the Central Valley of California, and the first reported occurrence of race 1 in California since 1973 (2). Cantaloupe varieties currently grown in California are susceptible to race 1 of F. oxysporum f. sp. melonis References: (1) D. J. Jacobson and T. R. Gordon. Phytopathology 78:668, 1988. (2) J. V. Leary and W. D. Wilbur. Phytopathology 66:15, 1976.


Sign in / Sign up

Export Citation Format

Share Document