scholarly journals A New Race of Fusarium oxysporum f. sp. melonis Causing Fusarium Wilt of Muskmelon in the Central Valley of California

Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1095-1095 ◽  
Author(s):  
B. J. Gwynne ◽  
T. R. Gordon ◽  
R. M. Davis

In 1996, cantaloupe (Cucumis melo L. cv. Durango) vines in two fields exhibited wilt, vascular discoloration, and necrotic streaks on the stems. Fusarium oxysporum Schlechtend.:Fr. was isolated from the stems of vines from both fields. One isolate from each field was compared with known isolates of F. oxysporum f. sp. melonis (Leach & Currence) W.C. Snyder & H.N. Hansen races 1 and 2 in a differential host range experiment in the greenhouse. Three-week-old seedlings were root-dip inoculated with monoconidial isolates at a concentration of 5 × 105 spores per ml. Control plants were dipped in water. In two experiments, the test isolates killed the susceptible varieties Top Mark and Magnum .45 and the race 2 resistant varieties Durango, Gold Mine, and Perlita FR. Seedlings of variety Charentais with the Fom2 gene conferring resistance to race 1 were resistant to both test isolates. It was determined that both of these isolates are associated with vegetative compatibility group (VCG) 0134 (1). This is the first report of race 1 and VCG 0134 of F. oxysporum f. sp. melonis causing Fusarium wilt of muskmelon in the Central Valley of California, and the first reported occurrence of race 1 in California since 1973 (2). Cantaloupe varieties currently grown in California are susceptible to race 1 of F. oxysporum f. sp. melonis References: (1) D. J. Jacobson and T. R. Gordon. Phytopathology 78:668, 1988. (2) J. V. Leary and W. D. Wilbur. Phytopathology 66:15, 1976.

Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 530-536 ◽  
Author(s):  
C. A. Clark ◽  
J-W. Hyun ◽  
M. W. Hoy

Thirty-five isolates of Fusarium oxysporum obtained from diseased sweetpotato or tobacco were compared for pathogenicity on two cultivars each of sweetpotato and tobacco, by random amplified polymorphic DNA (RAPD) profiles, and by vegetative compatibility group (VCG) analysis. Analysis of RAPD profiles revealed five clusters of isolates that corresponded to patterns of pathogenicity. One cluster of isolates, designated as F. oxysporum f. sp. nicotianae, induced severe wilting on both tobacco cultivars but varied from weakly to highly aggressive on the sweetpotato cultivars. Four of the 16 isolates from this group were originally isolated from sweetpotato, and 1 isolate caused severe disease on both crops. Three clusters included isolates from sweetpotato that were virulent on Porto Rico, caused little or no disease on Beauregard and burley tobacco (cv. Kentucky 5), and did not cause wilt on flue-cured tobacco (cv. Gold Dollar). These isolates were designated as race 0 of F. oxysporum f. sp. batatas. Isolates obtained from sweetpotato from California clustered separately from other sweetpotato isolates and the tobacco isolates. They differed from other sweetpotato isolates in being virulent on Beauregard and are proposed as a new race 1 of F. oxysporum f. sp. batatas. VCG analysis was of limited value with the isolates in this study because many isolates were self-incompatible. In each case, all members of a VCG fell within the same cluster defined by RAPDs. This study demonstrated that F. oxysporum from at least three genetically distinct lineages can cause Fusarium wilt on sweetpotato, and that the host ranges of F. oxysporum f. sp. batatas and F. oxysporum f. sp. nicotianae overlap and include plants from two different families.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1326-1332 ◽  
Author(s):  
Anthony P. Keinath ◽  
Richard L. Hassell

Fusarium wilt of watermelon, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. niveum race 2, is a serious, widespread disease present in major watermelon-growing regions of the United States and other countries. ‘Fascination,’ a high yielding triploid resistant to race 1, is grown in southeastern states in fields that contain a mixture of races 1 and 2. There is some benefit to using cultivars with race 1 resistance in such fields, even though Fascination is susceptible to Fusarium wilt caused by race 2. Experiments in 2012 and 2013 were done in fields infested primarily with race 2 and a mixture of races 1 and 2, respectively. Fascination was grafted onto four rootstock cultivars: bottle gourd (Lagenaria siceraria) ‘Macis’ and ‘Emphasis’ and interspecific hybrid squash (Cucurbita maxima× C. moschata) ‘Strong Tosa’ and ‘Carnivor.’ Nongrafted and self-grafted Fascination were used as susceptible control treatments. In both experiments, mean incidence of plants with symptoms of Fusarium wilt was ≥52% in the susceptible control treatments and ≤6% on the grafted rootstocks. Disease incidence did not differ between rootstock species or cultivars. In both years, Fascination grafted onto Strong Tosa and Macis produced more marketable-sized fruit than the susceptible control treatments. Grafted Emphasis and Carnivor also produced more fruit than the control treatments in 2012. The cucurbit rootstocks suppressed Fusarium wilt caused by race 2 and increased marketable yield of triploid watermelon grown in infested soil.


1991 ◽  
Vol 39 (2) ◽  
pp. 161 ◽  
Author(s):  
NY Moore ◽  
PA Hargreaves ◽  
KG Pegg ◽  
JAG Irwin

The production of volatiles on steamed rice by Australian isolates of Fusarium oxysporum f. sp. cubense correlated well with race and vegetative compatibility group (VCG). All race 4 isolates (VCGs 0120, 0129) produced distinctive volatile odours which gave characteristic gas chromatograms where the num- ber of peaks equated to VCG. Race 1 (VCGs 0124, 0125) and race 2 (VCG 0128) isolates, as well as non-pathogenic isolates of F. oxysporum from the banana rhizosphere, did not produce detectable volatiles and gave chromatograms without significant peaks.


2007 ◽  
Vol 97 (4) ◽  
pp. 461-469 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts

Eighty-eight isolates of Fusarium oxysporum f. sp. niveum, collected from wilted watermelon plants and infested soil in Maryland and Dela-ware, were characterized by cross pathogenicity to muskmelon, race, and vegetative compatibility. Four isolates (4.5%) were moderately pathogenic to ≥2 of 18 muskmelon cultivars in a greenhouse test, and one representative isolate also was slightly pathogenic in field microplots. The four isolates all were designated as race 2, and were in vegetative compatibility group (VCG) 0082. Of the 74 isolates to which a VCG could be assigned, 41 were in VCG 0080, the VCG distributed most widely; 27 were in VCG 0082, and were distributed in half of the 20 watermelon fields surveyed; and 6 were in the newly described VCG 0083, and were restricted to three fields. Among the isolates in VCG 0080, 8 were designated as race 0, 21 as race 1, and 12 as race 2. Of the isolates in VCG 0082, 6 were designated as race 0, 11 as race 1, and 10 as race 2. All isolates in VCG 0083 were designated as race 2. Isolates from more than one race within the same VCG or isolates from more than one VCG were recovered from single plants and fields. No differences in aggressiveness on differential watermelon cultivars were observed among isolates from different VCGs of the same race. A diverse association between virulence and VCG throughout the Mid-Atlantic region suggests that the pathotypes of F. oxysporum f. sp. niveum may be of local origin or at least long existent in the region.


Plant Disease ◽  
1997 ◽  
Vol 81 (6) ◽  
pp. 592-596 ◽  
Author(s):  
T. L. Zuniga ◽  
T. A. Zitter ◽  
T. R. Gordon ◽  
D. T. Schroeder ◽  
D. Okamoto

Forty-six isolates of Fusarium oxysporum f. sp. melonis obtained from soil samples throughout melon-producing areas in New York State were identified on the basis of pathogenicity and colony morphology. Physiological races 1 and 2 were identified by their reaction on a set of differential melon cultivars. Race 1 was widely distributed, occurring in six of the seven New York counties surveyed. Twenty-seven of the 28 race 1 isolates were associated with vegetative compatibility group (VCG) 0134, whereas one was incompatible with all known VCGs of F. oxysporum f. sp. melonis. Twelve out of 18 race 2 isolates were associated with VCG 0131, and occurred in four counties in eastern and western New York. Five isolates of race 2, associated with VCG 0130, were recovered from a farm in Washington County, as was a single race 2 isolate which was incompatible with all known VCGs of F. oxysporum f. sp. melonis. Restriction fragment length polymorphisms in the nuclear DNA revealed variability among the isolates examined, but race 1/VCG 0134 isolates from New York and Maryland were identical or nearly so, as were race 2/VCG 0131 isolates from the two states. These findings suggest a close relationship between the populations of F. oxysporum f. sp. melonis in New York and Maryland. Race 2 isolates were more virulent than race 1 isolates, based on the number of days to first symptoms and death of melon seedlings.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 92-98 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts ◽  
B. D. Bruton

Three races (0, 1, and 2) of Fusarium oxysporum f. sp. niveum have been previously described in watermelon (Citrullus lanatus) based on their ability to cause disease on differential watermelon genotypes. Four isolates of F. oxysporum f. sp. niveum collected from wilted watermelon plants or infested soil in Maryland, along with reference isolates of races 0, 1, and 2, were compared for virulence, host range, and vegetative compatibility. Race identification was made on the watermelon differentials Sugar Baby, Charleston Gray, Dixielee, Calhoun Gray, and PI-296341-FR using a root-dip, tray-dip, or pipette inoculation method. All four Maryland isolates were highly virulent, causing 78 to 100% wilt on all differentials, one of which was PI-296341-FR, considered highly resistant to race 2. The isolates also produced significantly greater colonization in the lower stems of PI-296341-FR than a standard race 2 reference isolate. In field microplots, two of the isolates caused over 90% wilt on PI-296341-FR, whereas no disease was caused by a race 2 isolate. All four isolates were nonpathogenic on muskmelon, cucumber, pumpkin, and squash, confirming their host specific pathogenicity to watermelon. The Maryland isolates were vegetatively compatible to each other but not compatible with the race 2 isolates evaluated, indicating their genetic difference from race 2. This study proposes that the Maryland isolates belong to a new race, race 3, the most virulent race of F. oxysporum f. sp. niveum described to date.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 199-199
Author(s):  
R. C. Ploetz ◽  
J. L. Haynes

Race 3 of Fusarium oxysporum f. sp. lycopersici, cause of Fusarium wilt of tomato, Lycopersicon esculentum, was first recognized in Florida in 1982 on the west coast (Hillsborough and Manatee counties) (2). Approximately 10 years later, race 3 was reported in northeastern production areas of the state (Gadsden County) (1) and was observed on the east coast (Ft. Pierce area) (D. O. Chellemi, personal communication). During the 1998 to 1999 season, mature plants of Sanibel, a commercial tomato cultivar with resistance to races 1 and 2, were observed with symptoms of Fusarium wilt at the University of Florida's Tropical Research and Education Center in Homestead. Approximately 20% of the plants were conspicuously wilted, chlorotic, and necrotic in all or unilateral portions of the canopy. Internal, vascular discoloration in affected plants extended far into the canopy, distinguishing the disease from Fusarium crown rot, caused by F. oxysporum f. sp. radicis-lycopersici. Pure colonies of fungi were isolated from surface-disinfested (10 s with 70% ethanol, 2 min with 10% bleach) stem segments on potato dextrose agar (PDA) amended with streptomycin (100 mg/liter), rifamycin (50 mg/liter), and a commercial miticide (Danitol 2EHC [4 drops/liter]). Isolates were identified as F. oxysporum due to their production of typical falcate macroconidia with foot-shaped basal cells, microconidia borne in false heads only on mono-phialides, and chlamydospores. In replicated (three) greenhouse trials, six single-spore isolates were used to root-dip inoculate (107 conidia per ml) seedlings of differential tomato cultivars (Bonnie Best, no resistance; Manapal, race 1 resistance; Walter, race 1 and race 2 resistance). All isolates were pathogenic on each of the differential cultivars, and one isolate, 2-1, caused severe damage on Walter (mean rating of 3.5 on a 1 to 5 scale). The results were repeated in a second trial with the most virulent isolate. In both trials, pure colonies of F. oxysporum were recovered from symptomatic seedlings. Southeastern Florida is the last major tomatoproduction area in Florida to be affected by race 3 of F. oxysporum f. sp. lycopersici. References: (1) D. O. Chellemi and H. A. Dankers. Plant Dis. 76:861, 1992. (2) R. B. Volin and J. P. Jones. Proc. Fla. State Hortic. Soc. 95:268, 1982.


Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1820-1827 ◽  
Author(s):  
Anthony P. Keinath ◽  
Paula A. Agudelo

Interspecific hybrid squash (Cucurbita maxima × C. moschata ‘Strong Tosa’) and bottle gourd (Lagenaria siceraria ‘Macis’) rootstocks are resistant to Fusarium oxysporum f. sp. niveum but susceptible to Meloidogyne incognita (Southern root-knot nematode). Coinfection of Early Prolific Straightneck summer squash (C. pepo) with root-knot nematode and F. oxysporum f. sp. niveum has been reported to increase susceptibility to Fusarium wilt. The objectives of this study were to determine whether such an interaction occurred between M. incognita and F. oxysporum f. sp. niveum races 1 and 2 on Strong Tosa, Macis, and watermelon cultivars Fascination (resistant to race 1) and Tri-X 313 (susceptible to both races). Hosts were inoculated in a greenhouse with one of four pathogen treatments: F. oxysporum f. sp. niveum, M. incognita, both pathogens, or neither pathogen. Galling was present on ≥10% of the root systems of 90% of the plants inoculated with M. incognita. Bottle gourd had less galling than interspecific hybrid squash. Plants not inoculated with F. oxysporum f. sp. niveum did not wilt. Four weeks after inoculation, incidence and severity of Fusarium wilt and recovery of F. oxysporum did not differ for any hosts inoculated with F. oxysporum f. sp. niveum alone and F. oxysporum f. sp. niveum plus M. incognita (host–treatment interactions not significant). In general, Early Prolific Straightneck grouped with the F. oxysporum f. sp. niveum-resistant rootstocks when inoculated with F. oxysporum f. sp. niveum race 2 and with the susceptible watermelon when inoculated with race 1, regardless of inoculation with M. incognita. Recovery of F. oxysporum from stems of inoculated watermelon was greater than recovery from the other three hosts, regardless of nematode inoculation. In conclusion, our experiments do not support the hypothesis that resistance to F. oxysporum f. sp. niveum in cucurbit rootstocks or resistant watermelon cultivars would be compromised when M. incognita infects the roots.


2003 ◽  
Vol 83 (2) ◽  
pp. 377-379 ◽  
Author(s):  
S. Neumann and A. G. Xue

Reactions of the 117 field pea cultivars available in Canada were evaluated to the four common races (1, 2, 5, and 6) of Fusarium oxysporum Schl. f. sp. pisi (van Hall) Sny. and Hans, the causal agent of fusarium wilt, in growth chambers. Based on the visual assessment of foliar wilt symptoms, 49 cultivars were resistant to at least one of the four races, and the remaining 68 cultivars were susceptible to all four races. Of these resistant cultivars, Ascona and 44 other cultivars were resistant to race 1; Impala to race 2; Aladin to races 1 and 2; and Radley and Princess to races 2, 5, and 6. In an effort to standardize the methodology for screening field pea for resistance to the pathogen, other quantitative parameters including shoot length, vascular discoloration, and shoot and root dry weights were evaluated on selected cultivars. Correlation analysis revealed that foliar wilt symptoms and the reduction in shoot length were highly correlated (r = -0.90, P < 0.01). The result suggests that the reduction in shoot length could be used to supplement the visual severity rating for fusarium wilt in field pea. Key words: Field pea, Pisum sativum, fusarium wilt, Fusarium oxysporum f. sp. pisi, resistance


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1133
Author(s):  
Freddy Magdama ◽  
Lorena Monserrate-Maggi ◽  
Lizette Serrano ◽  
José García Onofre ◽  
María del Mar Jiménez-Gasco

The continued dispersal of Fusarium oxysporum f. sp. cubense Tropical race 4 (FocTR4), a quarantine soil-borne pathogen that kills banana, has placed this worldwide industry on alert and triggered enormous pressure on National Plant Protection (NPOs) agencies to limit new incursions. Accordingly, biosecurity plays an important role while long-term control strategies are developed. Aiming to strengthen the contingency response plan of Ecuador against FocTR4, a population biology study—including phylogenetics, mating type, vegetative compatibility group (VCG), and pathogenicity testing—was performed on isolates affecting local bananas, presumably associated with race 1 of F. oxysporum f. sp. cubense (Foc). Our results revealed that Foc populations in Ecuador comprise a single clonal lineage, associated with VCG0120. The lack of diversity observed in Foc populations is consistent with a single introduction event from which secondary outbreaks originated. The predominance of VCG0120, together with previous reports of its presence in Latin America countries, suggests this group as the main cause of the devastating Fusarium wilt epidemics that occurred in the 1950s associated to the demise of ‘Gros Michel’ bananas in the region. The isolates sampled from Ecuador caused disease in cultivars that are susceptible to races 1 and 2 under greenhouse experiments, although Fusarium wilt symptoms in the field were only found in ‘Gros Michel’. Isolates belonging to the same VCG0120 have historically caused disease on Cavendish cultivars in the subtropics. Overall, this study shows how Foc can be easily dispersed to other areas if restriction of contaminated materials is not well enforced. We highlight the need of major efforts on awareness and monitoring campaigns to analyze suspected cases and to contain potential first introduction events of FocTR4 in Ecuador.


Sign in / Sign up

Export Citation Format

Share Document