scholarly journals Characterization and Pathogenicity of Rhizoctonia Species on Canola

Plant Disease ◽  
1999 ◽  
Vol 83 (8) ◽  
pp. 714-721 ◽  
Author(s):  
Ravjit K. Khangura ◽  
Martin J. Barbetti ◽  
Mark W. Sweetingham

A total of 112 Rhizoctonia isolates were collected from various canola (Brassica napus) growing areas of Western Australia. Pectic enzyme electrophoresis differentiated these isolates into six distinct zymogram groups: R. solani, 54% ZG5 (AG2-1), 8% ZG6 (AG2-1), and 1% ZG9 (AG10); binucleate Rhizoctonia, 12% CZG1 (CAG1), 4% CZG4, and 6% CZG5 (AGK); and the remainder unidentified binucleate groups (15%). Binucleate groups were also confirmed by fluorescent nuclear staining and hyphal morphology. One or more isolates from each of the above zymogram groups (including four unidentified binucleate groups) and an isolate of ZG1-1 (AG8) that causes bare patch in cereals and legumes were tested for their pathogenicity on canola. Isolates of ZG5 and ZG1-1 were highly pathogenic on canola, delayed seedling emergence, and caused severe hypocotyl and root rot, respectively. ZG5 also induced postemergence damping-off. Increasing the depth of sowing from 1 to 3 cm significantly delayed seedling emergence and increased disease severity. Four unidentified binucleate isolates (WAC9316, WAC9297, WAC9307, and WAC9290) were moderately pathogenic to canola, while two isolates (WAC9307 and WAC9316) caused significant preemergence damping-off. Two CZG5 isolates were weakly pathogenic. Isolates of ZG5 and ZG1-1 were also tested for their pathogenicity on other rotational crops (narrow-leafed lupin, subterranean clover, wheat, oats, barley, and mustard) and two weed species (wild radish and annual ryegrass). ZG5 caused a severe hypocotyl rot on mustard and mild symptoms of hypocotyl rot on narrow-leafed lupin and clover, but failed to infect any of the cereal hosts, such as wheat, oats, barley, and ryegrass. In contrast, all crops tested were highly susceptible to ZG1-1 except mustard, which was only moderately susceptible. Results indicate that ZG5 is most pathogenic to crucifers and is a mildly virulent pathogen of the leguminous crops but not of cereal crops tested. ZG1-1, known to cause bare patch in legumes and cereals, also can cause severe root rot in canola. This is the first report of hypocotyl rot and pathogenicity of ZG5 on canola in Australia.

1987 ◽  
Vol 27 (5) ◽  
pp. 671 ◽  
Author(s):  
GC MacNish ◽  
CS Fang

The effects of short chemical fallows after ryegrass pasture on rhizoctonia bare patch and root rot ofwheat were studied in 2 experiments at the Esperance Downs Research Station, 35 km north of Esperance, W.A. In 1 experiment the subterranean-clover dominant pasture was sprayed with a paraquat-diquat mixture prior to resowing with annual ryegrass at densities ranging from 3 to about 400 plants m-2. The ryegrass was allowed to grow for either 42 or 63 days prior to treatment with a desiccant herbicide (paraquat-diquat) followed by a short chemical fallow of 26 or 5 days, respectively, before sowing with wheat using minimum tillage. Some treatments were cultivated twice to 10 cm. Neither the ryegrass density nor the length of chemical fallow had any effect (P=0.05) on rhizoctonia bare patch score or incidence or severity of root rot. However, cultivation caused 76% reduction in mean patch score and a 38 and 68% reduction in mean rhizoctonia incidence and severity respectively. Yield was negatively correlated with rhizoctonia incidence and severity: each 1% increase in incidence percentage resulted in 17 kg ha-1 reduction in grain yield of wheat. In another experiment, chemical fallow periods of 66, 52, 24 or 1 day prior to sowing wheat had no effect (P= 0.05) on rhizoctonia root rot incidence.


1978 ◽  
Vol 18 (92) ◽  
pp. 426 ◽  
Author(s):  
MJ Barbetti ◽  
GC MacNish

Investigations in 1974 identified the fungi associated with the roots of subterranean clover at four irrigated sites at Wagerup, Western Australia. Two of these sites had previously had a disease problem, two were apparently healthy. A range of fungi were isolated, including Pythium irregulare, P. debaryanum, P. acanthicum, P. middletonii, Fusarium oxysporum, and Rhizoctonia spp. There was a more rapid buildup of Pythium spp. population following the initial irrigation, and an overall lower incidence of Fusarium spp., at the diseased sites. The incidence of Rhizoctonia spp. was usually low and variable at all sites. Disease index ratings rose more rapidly for diseased sites. No association was proven between disease incidence and soil water potential. The three most frequently isolated fungi; viz. P. irregulare, P. acanthicum, and F. oxysporum, were all shown to be capable, under the conditions of this investigation, of producing high levels of tap and lateral root rot, and of causing reductions in seedling emergence. In some cases the levels of both tap and lateral root rot were increased, and the plant emergence decreased, by the application of two or more fungi in combination in comparison with application of a single fungus. Overall P. irregulare was the most pathogenic of the fungi tested.


2011 ◽  
Vol 37 (4) ◽  
pp. 218-220 ◽  
Author(s):  
Trazilbo José de Paula Júnior ◽  
Hudson Teixeira ◽  
Rogério Faria Vieira ◽  
Miller da Silva Lehner ◽  
Renan Cardoso de Lima ◽  
...  

We studied the susceptibility of species used as green manure in common bean fields to root rot (Rhizoctonia solani) and southern blight (Sclerotium rolfsii). Seeds of Crotalaria breviflora, Canavalia ensiformis, Cajanus cajan, Dolichos lablab, Stizolobium cinereum, S. aterrimum, and the bean cvs. "Pérola", "Valente" and "Carnaval" were sown in soil infested by either R. solani AG-4 or S. rolfsii in greenhouse. The emergence of D. lablab seedlings in soil infested by R. solani dropped to 62%. C. breviflora, C. ensiformis and cv. "Valente" presented the lowest root rot severity. The pathogen S. rolfsii drastically reduced seedling emergence in all species; no C. cajan and S. cinereum seedling emerged. All plant species presented high southern blight severity. We conclude that leguminous crops are not suitable as green manure for areas of bean cultivation with high R. solani and S. rolfsii populations.


1997 ◽  
Vol 12 (4) ◽  
pp. 146-161 ◽  
Author(s):  
Udo Blum ◽  
Larry D. King ◽  
Tom M. Gerig ◽  
Mary E. Lehman ◽  
Arch D. Worsham

AbstractWe monitored emergence of morning-glory, pigweed, and prickly sida from seeded populations in no-till plots with no debris (reference plots) or with crimson clover, subterranean clover, rye, or wheat debris. Cover crops were either desiccated by glyphosate or mowed and tilled into the soil. Debris levels, soil temperature, moisture, pH, nitrate, total phenolic acid and compaction were monitored during May to August in both 1992 and 1993. Seedling emergence for all three weed species ranged from <1 to 16% of seeds sown. Surface debris treatments delayed weed seedling emergence compared with the reference plots. Rye and wheat debris consistently suppressed weed emergence; in contrast, the effects of clover debris on weed emergence ranged from suppression to stimulation. Gfyphosate application resulted in a longer delay and greater suppression of seedling emergence in May than in April. In 1993, plots in which living biomass was tilled into the soil were also included and monitored. Weed seedling emergence was stimulated when living biomass was incorporated into the soil. Covariate, correlation and principle component analyses did not identify significant relationships between weed seedling emergence and soil physical and chemical characteristics (e.g., total phenolic acid, nitrate, moisture, temperature). We hypothesize that the observed initial delay of the weed seedling emergence for all three species was likely due to low initial soil moisture. The subsequent rapid recovery of seedling emergence of morning-glory and pigweed but notprickfy sida in the clover compared with the small grain debris plots was likely due to variation in soil allelopathic agents or nitrate-N levels. The stimulation of weed seedling emergence when living biomass was incorporated into the soil was likely caused by an increase in “safe” germination sites coupled with the absence of a zone of inhibition resulting from tillage.


1985 ◽  
Vol 25 (3) ◽  
pp. 574 ◽  
Author(s):  
DH Wong ◽  
MJ Barbetti ◽  
K Sivasithamparam

Field trials were conducted during 1982-84 to determine the severity of root rot, and the identity and pathogenicity of the fungi associated with root rot of subterranean clover at five locations in the south-west of Western Australia. At all sites, there was moderate to severe root rot and seedling emergence was greatly reduced. Pythium irregulare and Fusarium oxysporum were the fungi most frequently isolated from diseased roots. F. avenaceum, P. irregulare, P. spinosum and R. solani were highly pathogenic to subterranean clover seedlings. F. oxysporum and P. medicaginis were less pathogenic and F. acuminatum, F. culmorum, F. equiseti, one isolate of M. phaseoli, and W. circinata were only weakly pathogenic. Ceratobasidium sp. (AG K), F. sulphureum, one isolate of M. phaseoli, P. coloratum, and R. cereale were non-pathogenic. This is the first record of pathogenicity of F. acuminatum, F. culmorum, F. equiseti, M. phaseoli and P. spinosum on subterranean clover in Western Australia. P. clandestina was detected at all sites.


2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


Sign in / Sign up

Export Citation Format

Share Document