scholarly journals First Report of Leaf Blight of Dianthus chinensis Caused by Rhizoctonia solani

Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1344-1344
Author(s):  
G. E. Holcomb ◽  
D. E. Carling

Dianthus chinensis (rainbow pink) is a popular seasonal bedding plant for the Gulf Coast of the United States and is primarily grown during the fall, winter, and early spring months. In August 1999, diseased plants were observed in a Baton Rouge, LA, propagation nursery with irregularly oval, tan leaf spots 3 to 10 mm in diameter. Heavily infected leaves became blighted and were killed, but plants survived and roots, crowns, and flowers were not affected. Infected leaf samples were surface-disinfected for 1 to 3 min in 70% ethyl alcohol, blotted dry, and sections were placed on 2% acidified water agar. A fungus that was identified as Rhizoctonia solani, and belonging to anastomosis group (AG)-1 IB, was consistently isolated from infected leaves. Inoculum was prepared by blending one 7-day-old plate culture, grown on acidified potato-dextrose agar, in 100 ml distilled deionized water. Pathogenicity tests were performed by dripping inoculum from a 10-ml pipette on leaf surfaces of healthy rainbow pink plants. Inoculated and noninoculated plants were held in a dew chamber at 26°C for 2 to 3 days and then removed to a greenhouse where temperatures ranged from 25 to 32°C. Inoculated plants developed water-soaked spots after 2 to 3 days that turned tan and became necrotic 5 to 10 days later. These symptoms were like those observed on the original diseased plants. R. solani was reisolated from inoculated plants, and noninoculated plants remained healthy. Although R. solani has been reported previously as a root and stem pathogen of D. chinensis (1), this is the first report of leaf blight disease caused by this fungus. Reference: (1) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.

Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 433-433 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata (Ranunculaceae), fan columbine, is a perennial herbaceous plant with brilliant blue-purple flowers with white petal tips. It can also be grown for cut flower production. In April of 2008, in several nurseries located near Biella (northern Italy), a leaf blight was observed on 10 to 15% of potted 30-day-old plants grown on a sphagnum peat substrate at 15 to 20°C and relative humidity of 80 to 90%. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along the leaf margins. Lesions expanded over several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, and abscised. Severely infected plants died. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently recovered, then transferred and maintained in pure culture. Ten-day-old mycelium grown on PDA at 22 ± 1°C appeared light brown, rather compact, and had radial growth. Sclerotia were not present. Isolates obtained from affected plants successfully anastomosed with tester isolate AG 4 (AG 4 RT 31, obtained from tobacco plants). Results were consistent with other reports on anastomosis reactions (2). Pairings were also made with tester isolates of AG 1, 2.1, 2.2, 3, 6, 7, 11, and BI with no anastomoses observed between the recovered and tester isolates. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 648-bp fragment showed a 100% homology with the sequence of R. solani AG-4 AB000018. The nucleotide sequence has been assigned GenBank Accession No. FJ 534555. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Five plants of 30-day-old A. flabellata were grown in 3-liter pots. Inoculum consisting of an aqueous suspension of PDA and mycelium disks (5 g of mycelium + agar per plant) was placed at the collar of plants. Five plants inoculated with water and PDA fragments alone served as control treatments. Plants were maintained in a greenhouse at temperatures between 20 and 24°C. The first symptoms, similar to those observed in the nursery, developed 7 days after the artificial inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. The presence of R. solani AG1-IB on A. flabellata has been reported in Japan (4), while in the United States, Rhizoctonia sp. is described on Aquilegia sp. (3). This is, to our knowledge, the first report of leaf blight of A. flabellata caused by R. solani in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, The Netherlands, 1996. (3) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (4) E. Imaizumi et al. J. Gen. Plant Pathol. 66:210, 2000.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 432-432 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Hosta fortunei (Liliaceae) is used in semishaded areas of gardens for its lavender-colored flowers produced in midsummer. In April of 2008, in a greenhouse at the University of Torino, located in Grugliasco (northern Italy), a leaf blight was observed on 15% of potted 60-day-old plants growing at temperatures ranging between 20 and 25°C and relative humidity of 60 to 90%. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along leaf margins. Lesions expanded for several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, and clung to the shoots. Severely infected plants died. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter streptomycin sulfate. A fungus with the morphological characters of Rhizoctonia solani (4) was consistently recovered, then transferred and maintained in pure culture. Ten-day-old mycelium grown on PDA at 22 ± 1°C appeared light brown, rather compact, and had radial growth. Sclerotia were not present. Isolates of R. solani obtained from affected plants were successfully anastomosed with tester isolate AG 4 (AG 4 RT 31 obtained from tobacco plants). Results were consistent with other reports on anastomosis reactions (2). Pairings were also made with tester isolates of AG 1, 2.1, 2.2, 3, 6, 7, 11, and BI, but no anastomosis was observed. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 646-bp fragment showed a 100% homology with the sequence of R. solani AG-4 AB000018. The nucleotide sequence has been assigned GenBank Accession No. FJ 534556. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Six-month-old plants of H. fortunei were grown in 1-liter pots. Inoculum, which consisted of an aqueous suspension of PDA and mycelium disks (10 g of mycelium per pot), was placed at the collar of plants. Plants inoculated with water and PDA fragments alone served as control treatments. Five plants per treatment were used. Plants were maintained in a growth chamber at 20 ± 1°C. The first symptoms, similar to those observed in the nursery, developed 15 days after inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. R. solani was reported on plants belonging to the genus Hosta in the United States (3). This is, to our knowledge, the first report of leaf blight of H. fortunei caused by R. solani in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, The Netherlands, 1996. (3) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathology Society, St Paul, MN, 1989. (4) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 1034-1034
Author(s):  
M. A. Delaney ◽  
E. J. Sikora ◽  
D. P. Delaney ◽  
M. E. Palm ◽  
J. Roscoe ◽  
...  

Soybean rust, caused by the fungus Phakopsora pachyrhizi, was detected on jicama (Pachyrhizus erosus L. Urban) for the first time in the United States in November 2009. The pathogen was observed on leaves of a single, potted jicama plant grown outdoors in a residential area and on leaves of all plants in a 12-m2 demonstration plot located at the Auburn University Teaching Garden in Auburn, AL. Symptoms on the upper leaf surfaces were isolated chlorotic areas near the leaf edges in the lower part of the canopy. The abaxial surface was first observed to exhibit brown lesions and subsequently produced volcano-shaped uredinia. These symptoms are consistent with a rust previously described on jicama in Mexico (1). Representative symptomatic plant tissue was sent to the USDA National Identification Services (Mycology) Laboratory in Beltsville, MD for diagnostic confirmation at both the Urbana, IL lab and the USDA National Plant Germplasm and Biotechnology Laboratory for DNA testing. From an infected leaf, samples of approximately 5 mm2 were excised from a microscopically observed rust lesion and an apparently noninfected area. Total DNA was purified with the FastDNA Spin Kit (MP Biomedicals, Solon, OH) followed by the E.Z.N.A. MicroElute DNA Clean-Up Kit (Omega Bio-tek, Inc, Doraville, GA) per manufacturer's instructions. Detection of P. pachyrhizi and P. meibomiae DNA was achieved by quantitative PCR using the method of Frederick et al. (2) and a DNA standard of previously prepared P. pachyrhizi spores. The observed rust pustule was found to contain P. pachyrhizi DNA in excess of 28,000 genomes, while no P. pachyrhizi DNA was observed from the asymptomatic sample. Both samples were negative for P. meibomiae. The fungal structures present were confirmed to be Phakopsora spp. DNA was extracted from sori aseptically removed from leaves with a Qiagen (Valencia, CA) DNeasy Plant Mini Kit and amplified with primers Ppa1 and NL4. The resulting partial ITS2 and 28S ribosomal RNA sequences were 100% identical to GenBank entry DQ354537 P. pachyrhizi internal transcribed spacer 2 and 28S ribosomal RNA gene, partial sequence. Sequences from jicama from Alabama were deposited in GenBank. Voucher specimens were deposited in the USDA Agricultural Research Service, National Fungus Collection (BPI). To our knowledge, this is the first report of the disease on jicama in the United States. References: (1) A. Cárcamo Rodriguez et al. Plant Dis. 90:1260, 2006. (2) R. D. Frederick et al. Phytopathology 92:217, 2002.


Plant Disease ◽  
2003 ◽  
Vol 87 (7) ◽  
pp. 875-875 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
R. Nicoletti ◽  
M. L. Gullino

Lantana camara is increasingly grown in northern Italy as a potted plant and contributes to the diversification of offerings in the ornamental market. During the spring of 2001, selections of L. camara cuttings growing at a commercial farm located at Albenga (Riviera coast) exhibited tan leaf spots of irregular size and shape. Spots were at first isolated, 4 to 8 mm in diameter, and later coalesced and affected the entire plant. Heavily infected leaves, stems, and branches became blighted and were killed. Infected rooted cuttings also eventually died. Diseased cuttings showed a progressive reduction (to less than 20%) in rooting ability. Isolations from infected leaves and stems on potato dextrose agar (PDA), supplemented with 100 mg/liter of streptomycin sulphate, consistently yielded a fungus with mycelial and cultural characteristics resembling Rhizoctonia solani. The fungal isolates were further characterized as R. solani Kühn AG-4 based on hyphal anastomoses with several AG-4 tester isolates. Pathogenicity tests were performed by placing 5-day-old-fungal mycelial plugs, grown on PDA, at the base of five healthy yellow-sage stems and holding plants in a dew chamber at 18 to 22°C. After 2 days, foliage blight appeared on leaves of inoculated plants, and after 3 days, stems also became infected and entire plants wilted. Five noninoculated plants remained healthy. The fungal pathogen was reisolated from all inoculated plants. R. solani has been observed on L. camara in the United States (1) and the Philippines (2). To our knowledge, this is the first report of R. solani on L. camara in Europe. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) F. T. Orillo and R. B. Valdez. Philipp. Agric. A. 42:292, 1958.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 288-288 ◽  
Author(s):  
X. Liao ◽  
Y. Fu ◽  
S. Zhang ◽  
Y. P. Duan

Indian spinach (Basella rubra L.) is a red stem species of Basella that is cultivated worldwide as an ornamental and the aerial parts are also consumed as a vegetable. In May of 2011, symptoms of damping-off were observed on approximately 10% of the plants at the stem base around the soil line of seedlings in a greenhouse in Homestead, FL. Lesions were initially water soaked, grayish to dark brown, irregular in shape, and sunken in appearance on large plants, causing the infected seedlings to collapse and eventually die. Symptomatic stem tissue was surface sterilized with 0.6% sodium hypochlorite, rinsed in sterile distilled water, air dried, and plated on potato dextrose agar (PDA). Plates were incubated at 25°C in darkness for 3 to 5 days. A fungus was isolated in all six isolations from symptomatic tissues on PDA. Fungal colonies on PDA were light gray to brown with abundant growth of mycelia, and the hyphae tended to branch at right angles when examined under a microscope. A septum was always present in the branch of hyphae near the originating point and a slight constriction at the branch was observed. Neither conidia nor conidiophores were found from the cultures on PDA. The characteristics of hyphae, especially the right angle branching of mycelia, indicate close similarity to those of Rhizoctonia solani (2,3). The internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced (GenBank Accession No. JN545836). Subsequent database searches by the BLASTN program indicated that the resulting sequence had a 100% identity over 472 bp with the corresponding gene sequence of R. solani anastomosis group (AG) 4 (GenBank Accession No. JF701752.1), a fungal pathogen reported to cause damping-off on many crops. Pathogenicity was confirmed through inoculation of healthy India spinach plants with the hyphae of isolates. Four 4-week-old plants were inoculated with the isolates by placing a 5-mm PDA plug of mycelia at the stem base and covering with a thin layer of the soil. Another four plants treated with sterile PDA served as a control. After inoculation, the plants were covered with plastic bags for 24 h and maintained in a greenhouse with ambient conditions. Four days after inoculation, water-soaked, brown lesions, identical to the symptoms described above, were observed on the stem base of all inoculated plants, whereas no symptoms developed on the control plants. The fungus was isolated from affected stem samples, and the identity was confirmed by microscopic appearance of the hyphae and sequencing the ITS1/ITS4 intergenic spacer region, fulfilling Koch's postulates. This pathogenicity test was conducted twice. R. solani has been reported to cause damping-off of B. rubra in Ghana (1) and Malaysia (4). To our knowledge, this is the first report of damping-off caused by R. solani AG-4 on Indian spinach in Florida and the United States. With the increased interest in producing Asian vegetables for food and ornamental purposes, the occurrence of damping-off on Indian spinach needs to be taken into account when designing programs for disease management in Florida. References: (1) H. A. Dade. XXIX. Bull. Misc. Inform. 6:205, 1940. (2) J. R. Parmeter et al. Phytopathology 57:218, 1967. (3) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991. (4) T. H. Williams and P. S. W. Liu. Phytopathol. Pap. 19:1, 1976.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 969-969
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Platycodon grandiflorum (balloon flower), a perennial plant belonging to the Campanulaceae family, is widely grown as a bedding plant in temperate gardens. This species is characterized by the ability to bloom profusely throughout the summer into early fall and for its white to blue and pink flowers. In September 2008, symptoms of a previously unknown blight were observed in six gardens located in the Biella Province of northern Italy. When the disease developed, temperatures ranged between 15 and 22°C with frequent rains (149.8 mm of rainfall registered in September 2008 by the meteorological station of Oropa, located in the same area in which the disease appeared). Initially, leaves and petioles appeared chlorotic. Subsequently, lesions developed on the stems and flowers were sometimes affected. In each garden examined, approximately 50% of the plants were affected by the disease. A soft, gray mycelium was observed on symptomatic tissues, especially the stems. Severely infected leaves and stems eventually became completely rotted and later desiccated. Diseased tissue was excised from affected leaves, immersed in a solution containing 1% sodium hypochlorite for 10 s, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced abundant mycelium on PDA medium when incubated under constant fluorescent light at 22 ± 1°C. Numerous sclerotia were produced on PDA plates incubated for 20 days at 8 ± 1°C. Sclerotia were dark, irregular, and measured 1 to 3.5 × 0.9 to 2.5 (average 2.1 × 1.5) mm. Conidia were smooth, ash colored, unicellular, ovoid, and measured 11 to 19 × 7 to 13 (average 15 × 11) μm. These morphological features were typical of those described for Botrytis cinerea (2). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 539-bp segment showed 100% similarity with the sequence of Botryotinia fuckeliana (perfect stage of B. cinerea). The nucleotide sequence has been assigned the GenBank Accession No. GQ149480. Pathogenicity tests were performed by placing 1-cm2 fragments removed from PDA cultures of B. cinerea isolated from balloon flower on leaves of healthy potted P. grandiflorum plants (4-month-old). Five fragments were placed on each plant. Plants inoculated with PDA alone served as controls. Ten plants per treatment were used. Plants were covered with plastic bags for 5 days after inoculation and maintained in a greenhouse at temperatures between 18 and 23°C. The first foliar lesions developed on leaves 3 days after inoculation, and after 5 days, 80% of the leaves were severely infected. As the infection progressed after the inoculation, the stems also became infected. Control plants remained healthy. B. cinerea was consistently reisolated from leaf and stem lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of B. cinerea on P. grandiflorum in Italy, as well as in Europe. Blight on balloon flower attributed to Botrytis spp. was previously reported in the United States (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 1971. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1344-1344 ◽  
Author(s):  
B. E. L. Lockhart

Yellow ringspotting and concentric line patterns in plants of Dicentra (bleeding heart), Epimedium (barrenwort), and Heuchera (coral bells) from commercial nurseries and home gardens in Minnesota, Michigan, and Massachusetts were associated with infection by Tobacco rattle virus (TRV), which was identified by particle morphology, enzyme-linked immunosorbent assay and immunosorbent electron microscopy. No other viruslike particles were observed by electron microscopy in partially purified preparations of TRV-infected leaf tissue, and TRV was not detected in asymptomatic plants. This is the first report of TRV occurrence in Dicentra in the United States and the first report of TRV occurrence in Epimedium and Heuchera. In previous reports (1,2) we have called attention to the increasing incidence of TRV in vegetatively propagated perennial ornamental plant species in the United States and to the potential for virus spread to crops such as potato, in which TRV has not been reported in the midwestern United States. It is possible that increased international trade in vegetatively propagated ornamental plants may be resulting in the introduction of TRV and other exotic viruses into the United States and elsewhere. It is also possible that the natural occurrence of TRV in North America may be actually more widespread than has been reported. References: (1) B. E. Lockhart et al. Plant Dis. 79:1249, 1995. (2) B. E. Lockhart and J. A. Westendorp. Plant Dis. 82:712, 1998.


Plant Disease ◽  
2000 ◽  
Vol 84 (11) ◽  
pp. 1250-1250 ◽  
Author(s):  
M. L. Putnam

St. John's-wort, Hypericum perforatum L., was formerly considered a noxious weed in the Pacific Northwest and is now grown commercially for its medicinal properties. In May 1999, plants from a 5-ha field in Jefferson County, OR, were observed with yellowing leaves and stem dieback. Lower leaves showed marginal necrosis or circular, expanding, uniformly brown, unremarkable leaf lesions that appeared randomly over the lamina and consumed from a quarter to nearly the entire leaf area. Remaining leaf tissue was chlorotic, and affected leaves eventually abscised. Infection of the stems resulted in girdling lesions 0.5 to 1.0 cm in length that caused chlorosis, wilting, and eventual dieback of tissues distal to the lesion. Diploceras hypericinum (Cesati) Diedicke was sporulating on affected stems and leaves. The fungus was isolated from surface-disinfested tissue onto 1.5% water agar. A single-spore isolate was used to inoculate 10-month-old plants raised from seed in sand. Spores from 6-week-old cultures grown on 50% potato-dextrose agar were harvested, suspended in phosphate buffer with 0.2% gelatin (PBG), and sprayed onto three plants using a DeVilbiss atomizer. Inoculum concentration was 7 × 103 and 3 ml per plant were used (plants were 8 to 10 cm tall). Three control plants were sprayed with sterile PBG. Inoculated and control plants were separately bagged to retain moisture and maintained at 22 to 25°C. Four days later, inoculated plants exhibited leaf spots similar to those originally observed, followed by stem dieback. D. hypericinum was isolated from all inoculated plants but not from control plants. The known distribution of D. hypericinum is France, Germany, Portugal, Sweden, Greece, and Ontario, Canada (1,2). This is the first report of D. hypericinum causing leaf blight and stem dieback of St. John's-wort in the United States. References: (1) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN. (2) T. R. Nag Raj. 1993. Coelomycetous Anamorphs with Appendage-bearing Conidia. Mycologue Publications, Waterloo, Canada.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 878-878 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
A. Poli ◽  
M. L. Gullino

Coleus verschaffeltii Lem. (synonym C. blumei Benth., Plectranthus scutellaroides (L.) R. Br., and Solenostemon scutellarioides (L.) Codd), a perennial plant belonging to the Lamiaceae family, is used as a bedding plant for public gardens. The most popular cultivars produce speckled leaves of various colors. In October 2010, severe outbreaks of a previously unknown wilt were observed in a public garden at Torino (northern Italy) on 50 8-month-old plants. Plants were sprinkle irrigated. Initial symptoms were withering of leaves starting from the collar and brown streaks in the vascular tissue of roots, crown, and stem. Subsequently, infected tissues wilted and plants became stunted. Early leaf drop was observed and plants appeared bare, keeping few leaves only at the end of stems. Infected plants did not die but they lost the original ornamental aspect. Seventy percent of the plants were affected. Stems of 10 plants were disinfected with 1% sodium hypochlorite. Cross-sections through symptomatic vascular tissues were plated on potato dextrose agar amended with 25 ppm of streptomycin sulfate. After 10 days at 20 to 23°C, a fungus was consistently recovered from 90% of stems. Irregular, black microsclerotia, 29 to 76 × 14 to 52 (average 49 × 28) μm, developed in hyaline hyphae after 15 days of growth. Hyaline, elliptical, single-celled conidia, 3.9 to 7.2 × 1.7 to 2.8 (average 5.1 × 2.2) μm, developed on verticillate conidiophores with three phialides at each node. On the basis of these morphological characteristics, the fungus was identified as Verticillium dahliae (3). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS1/ITS4 (4) and sequenced. BLASTn analysis (1) of the 491-bp segment showed a 99% homology with the sequence of V. dahliae (Accession No. GU461634). The ITS nucleotide sequence of our isolate has been assigned the GenBank Accession No. JF704205. Pathogenicity tests were performed twice using 45-day-old plants obtained from seeds of C. verschaffeltii grown in 1-liter pots containing a 50:20:20:10 steamed mix of peat moss/pumice/pine bark/clay. Roots of 10 healthy plants were immersed in a conidial suspension (1.7 × 107 ml–1) of one culture of V. dahliae isolated from infected plants. Ten plants immersed in sterile water served as controls. Plants were maintained in a glasshouse at daily average temperatures between 20 and 28°C and relative humidity between 50 and 80%. First wilt symptoms and vascular discoloration in the roots, crown, and stems developed 20 days after inoculation. V. dahliae was consistently reisolated from infected vascular tissues of crown and stems of symptomatic plants. Noninoculated plants remained healthy. To our knowledge, this is the first report of Verticillium wilt on C. verschaffeltii in Italy. Verticillium wilt had been previously reported on S. scutellaroides in the United States (2). At this time, the economic importance of Verticillium wilt on C. verschaffeltii in Italy is limited. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society. St Paul, MN, 1989. (3) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Sign in / Sign up

Export Citation Format

Share Document