scholarly journals Occurrence of Seed Coat Mottling in Soybean Plants Inoculated with Bean pod mottle virus and Soybean mosaic virus

Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1333-1336 ◽  
Author(s):  
H. A. Hobbs ◽  
G. L. Hartman ◽  
Y. Wang ◽  
C. B. Hill ◽  
R. L. Bernard ◽  
...  

Soybean seed coat mottling often has been a problematic symptom for soybean growers and the soybean industry. The percentages of seed in eight soybean lines with seed coat mottling were evaluated at harvest after inoculating plants during the growing season with Bean pod mottle virus (BPMV), Soybean mosaic virus (SMV), and both viruses inside an insect-proof cage in the field. Results from experiments conducted over 2 years indicated that plants infected with BPMV and SMV, alone or in combination, produced seed coat mottling, whereas noninoculated plants produced little or no mottled seed. BPMV and SMV inoculated on the same plants did not always result in higher percentages of mottled seed compared with BPMV or SMV alone. There was significant virus, line, and virus-line interaction for seed coat mottling. The non-seed-coat-mottling gene (Im) in Williams isoline L77-5632 provided limited, if any, protection against mottling caused by SMV and none against BPMV. The Peanut mottle virus resistance gene Rpv1 in Williams isoline L85-2308 did not give any protection against mottling caused by SMV, whereas the SMV resistance gene Rsv1 in Williams isoline L78-379 and the resistance gene or genes in the small-seeded line L97-946 gave high levels of protection against mottling caused by SMV. The correlations (r = 0.77 for year 2000 and r = 0.89 for year 2001) between virus infection of the parent plant and seed coat mottling were significant (P = 0.01), indicating that virus infection of plants caused seed coat mottling.

2011 ◽  
Vol 27 (4) ◽  
pp. 315-323 ◽  
Author(s):  
Hyoun-Sub Lim ◽  
Chan-Yong Jang ◽  
Han-Hong Bae ◽  
Joon-Ki Kim ◽  
Cheol-Ho Lee ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 530-536 ◽  
Author(s):  
J. P. Soto-Arias ◽  
G. P. Munkvold

Infection of soybean by Bean pod mottle virus (BPMV) or Soybean mosaic virus (SMV) has been reported to increase susceptibility to seed infection by Phomopsis spp., but the mechanism is unclear. Effects of virus infection on susceptibility to Phomopsis longicolla were studied in greenhouse experiments. Three soybean cultivars were inoculated with BPMV at growth stage V2 to V3, and with P. longicolla at R3, R5, or R7. Inoculation with BPMV did not increase the incidence of stem infection by P. longicolla, but it increased susceptibility to seed infection of cultivars Spansoy 201 at R5, and Pioneer brand 92M02 at R3, R5, and R7. A delay in maturity was observed only in 92M02. Thus, BPMV predisposed soybean plants to seed infection by P. longicolla, but this predisposition was not due solely to prolonging maturation. In separate experiments, two soybean cultivars were inoculated with SMV (V2 to V3) and P. longicolla (R3 and R5). Inoculation with SMV did not increase the incidence of stem or seed infection by P. longicolla. The SMV–Phomopsis spp. relationship may be cultivar and strain dependent. Results suggest that the risk of soybean seed infection by P. longicolla may be higher when BPMV vector populations are high and BPMV infection is widespread.


2009 ◽  
Vol 19 (3) ◽  
pp. 145-153 ◽  
Author(s):  
Suzanne M. Kosina ◽  
Alexander Castillo ◽  
Steven R. Schnebly ◽  
Ralph L. Obendorf

AbstractSucrose, raffinose and stachyose accumulate in soybean [Glycine max L. (Merrill)] embryos during seed maturation. To determine the relationship of plant maternal composition on seed composition, soluble carbohydrates in three 1-cm2 leaf punches at three plant growth stages (R2, R3, R6) and in seed coat cup exudates in planta were analysed at four 30-min intervals on soybean plants (R5) with low-raffinose, low-stachyose (LRS) seeds expressing the mutant stc1 phenotype; low-raffinose, low-stachyose and low-phytin (LRSP1, LRSP2) seeds expressing the mutant mips phenotype; or normal raffinose, stachyose and phytin (CHECK) seeds expressing the Stc1 and Mips phenotype. Leaf sucrose (23.6 μg cm− 2), myo-inositol (9.3 μg cm− 2), d-chiro-inositol (6.7 μg cm− 2), d-ononitol (0.76 μg cm− 2), d-pinitol (50.1 μg cm− 2) and total soluble carbohydrates (107.1 μg cm− 2) were not significantly different between phenotypes. d-chiro-Inositol, myo-inositol, d-pinitol and sucrose were unloaded from soybean seed coat cups in planta at decreasing rates over the four sequential periods of sampling. Unloading rates of sucrose and myo-inositol were highest for LRS, d-pinitol was highest for LRSP2, and d-chiro-inositol was not different between LRS, LRSP1, LRSP2 and CHECK. Free cyclitols were 60% of total soluble carbohydrates in leaves and 20% in seed coat cup exudates. Except for sucrose and d-pinitol, seed phenotype had little influence on the composition of compounds unloaded from seed coats to maturing embryos of low-raffinose, low-stachyose seeds. Maternally supplied cyclitols may contribute, in part, to changes in the composition of cyclitol galactosides stored in mature seeds.


2001 ◽  
Vol 91 (10) ◽  
pp. 941-947 ◽  
Author(s):  
Nina Fleysh ◽  
Deepali Deka ◽  
Maria Drath ◽  
Hilary Koprowski ◽  
Vidadi Yusibov

Infection of soybean (Glycine max) plants inoculated with particles of Alfalfa mosaic virus (AlMV) isolate 425 at 12 days after germination was monitored throughout the life cycle of the plant (vegetative growth, flowering, seed formation, and seed maturation) by western blot analysis of tissue samples. At 8 to 10 days after inoculation, the upper uninoculated leaves showed symptoms of virus infection and accumulation of viral coat protein (CP). Virus CP was detectable in leaves, stem, roots, seedpods, and seed coat up to 45 days postinoculation (dpi), but only in the seedpod and seed coat at 65 dpi. No virus accumulation was detected in embryos and cotyledons at any time during infection, and no seed transmission of virus was observed. Soybean plants inoculated with recombinant AlMV passaged from upper uninoculated leaves of infected plants showed accumulation of full-length chimeric AlMV CP containing rabies antigen in systemically infected leaves and seed coat. These results suggest the potential usefulness of plants and plant viruses as vehicles for producing proteins of biomedical importance in a safe and inexpensive manner. Moreover, even the soybean seed coat, treated as waste tissue during conventional processing for oil and other products, may be utilized for the expression of value-added proteins.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 719-726 ◽  
Author(s):  
Amy D. Ziems ◽  
Loren J. Giesler ◽  
George L. Graef ◽  
Margaret G. Redinbaugh ◽  
Jean L. Vacha ◽  
...  

Bean pod mottle virus (BPMV) has become increasingly common in soybean throughout the north-central region of the United States. Yield loss assessments on southern soybean germplasm have reported reductions ranging from 3 to 52%. Currently, no soybean cultivars have been identified with resistance to BPMV. The objective of this study was to determine the impact of BPMV infection on soybean cultivars representing a broad range of northern soybean germ-plasm by comparing inoculated and noninoculated soybean plants in paired row studies. In all, 30 and 24 cultivars were evaluated in Nebraska (NE) in which soybean plants were inoculated at the V3 to V4 growth stage. Eleven cultivars from public and breeding lines were inoculated at the VC and R5 to R6 growth stages in Ohio (OH). Disease severity, yield, and percent seed coat mottling were assessed at both locations, whereas protein and oil content also were assessed at NE. Yield and percent seed coat mottling was significantly reduced following inoculation at the VC (OH) and V3 to V4 (NE) growth stages. In addition, seed oil and protein composition were impacted in 1 of the 2 years of the study. This study demonstrates that substantial yield losses can occur in soybean due to BPMV infection. In addition, protein and oil may be affected depending on the environment during the production season.


2016 ◽  
Vol 30 (10) ◽  
pp. 1648-1659 ◽  
Author(s):  
Maria Fernanda G. V. Peñaflor ◽  
Kerry E. Mauck ◽  
Kelly J. Alves ◽  
Consuelo M. De Moraes ◽  
Mark C. Mescher

2011 ◽  
Vol 101 (6) ◽  
pp. 750-756 ◽  
Author(s):  
Leslie L. Domier ◽  
Houston A. Hobbs ◽  
Nancy K. McCoppin ◽  
Charles R. Bowen ◽  
Todd A. Steinlage ◽  
...  

Infection of soybean plants with Soybean mosaic virus (SMV), which is transmitted by aphids and through seed, can cause significant reductions in seed production and quality. Because seedborne infections are the primary sources of inoculum for SMV infections in North America, host-plant resistance to seed transmission can limit the pool of plants that can serve as sources of inoculum. To examine the inheritance of SMV seed transmission in soybean, crosses were made between plant introductions (PIs) with high (PI88799), moderate (PI60279), and low (PI548391) rates of transmission of SMV through seed. In four F2 populations, SMV seed transmission segregated as if conditioned by two or more genes. Consequently, a recombinant inbred line population was derived from a cross between PIs 88799 and 548391 and evaluated for segregation of SMV seed transmission, seed coat mottling, and simple sequence repeat markers. Chromosomal regions on linkage groups C1 and C2 were significantly associated with both transmission of isolate SMV 413 through seed and SMV-induced seed coat mottling, and explained ≈42.8 and 46.4% of the variability in these two traits, respectively. Chromosomal regions associated with seed transmission and seed coat mottling contained homologues of Arabidopsis genes DCL3 and RDR6, which encode enzymes involved in RNA-mediated transcriptional and posttranscriptional gene silencing.


Sign in / Sign up

Export Citation Format

Share Document