scholarly journals First Report of Root Rot on Asparagus Caused by Phytophthora megasperma in Canada

Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 447-447 ◽  
Author(s):  
V. Vujanovic ◽  
C. Hamel ◽  
S. Jabaji-Hare ◽  
M. St-Arnaud

In August 2002, Phytophthora megasperma Drechs. was isolated from wilted plants of Asparagus officinalis L. cv. Guelph Millenium displaying spear and crown rot. Six affected plants were sampled in a commercial asparagus field located in the Saguenay-Lac-Saint-Jean Region (300 km northeast of Montreal, Quebec, Canada). The fungus was isolated from asparagus fern stalks, crown tissue, and spears after a rainy period and identified using morphological and cultural characteristics (2). In pinkish 4-week-old cultures, unbranched stalks bore abundant sporangia, which were ovoid to obpyriform in shape, 15 to 45 m long, and 10 to 30 m in diameter. Characteristic circular oospores >30 m in diameter were produced on V8 juice agar at 25°C in darkness after 1 month. Pathogenicity was tested on asparagus cvs. Guelph Millenium and Jersey Knight. A mycelium suspension (3 ml at 106 CFU/ml) prepared from 1-week-old shaken potato dextrose (PD) broth was sprayed on 30 1-week-old seedlings grown in petri plates filled with sterilized, moist, sandy soil and held at 20°C (day/night). Controls received sterile PD broth. Within 3 weeks of incubation in the dark, inoculated seedlings exhibited necrotic symptoms similar to those observed initially, while controls remained healthy. The pathogen was isolated from 75% of the ‘Guelph Millenium’ and 98% of the ‘Jersey Knight’ symptomatic seedlings, but not isolated from the control seedlings. In North America, disease caused by P. megasperma resulting in yield loss has been reported in California and New York (1,3). In Canada, the etiology of asparagus diseases is not well characterized. To our knowledge, this is the first report of P. megasperma on asparagus plants in Canada. References: (1) P. A. Ark and J. T. Barrett. Phytopathology 28:754, 1938. (2) D. C. Erwin et al. Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology. The American Phytopathological Society, St Paul, MN, 1983. (3) T-L. Kuan and D. C. Erwin. Phytopathology 70:333, 1980.

Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 488-488 ◽  
Author(s):  
K. Srinivasan ◽  
S. Visalakchi

During the spring of 2009, symptoms including leaf yellowing and wilting, root rot, and death of plants were noted in sunflower (Helianthus annuus L.) crops in Dharmapuri District, Tamilnadu, India. In some fields, approximately 30% of the plants were affected. The disease began when plants were approximately 10 weeks old and occurred on scattered or adjacent plants. The presence of white mycelium was observed on necrotic crowns. Symptomatic tissue was surface disinfested in 70% alcohol for 30 s and 0.5% sodium hypochlorite for 1 min and plated onto potato dextrose agar (PDA) (1). One isolate (coded SV001) had near right-angle branching with basal constriction and adjacent septa and sclerotia typical of Rhizoctonia spp. (2). Cream-colored colonies produced irregular, light brown sclerotia that were 3.0 to 7.3 mm (average 3.8 mm) in diameter. Hyphae were 6.8 to 7.0 μm (average 6.9 μm) wide and multinucleate (8 to 15 nuclei per cell). On the basis of hyphal anastomosis with several known AG testers, the fungus was characterized as Rhizoctonia solani Kühn AG-IV (3). One culture was deposited at the Madras University Botany Laboratory, Center for Advanced Studies in Botany, University of Madras, Chennai, India. In a pathogenicity test, R. solani SV001 was grown on PDA for 5 days at 24°C in the dark. Five-millimeter-diameter disks were placed at the base of sunflower plants (cv. Mordan). Four sunflower plants in each of three pots were inoculated; noninoculated plants served as controls. Plants were placed in a glasshouse maintained at 25 to 27°C. Inoculated plants developed yellow foliage and crown rot and root rot symptoms after 7 to 12 days and died in 17 to 20 days. No symptoms were observed on noninoculated plants. The pathogen was reisolated from fragments of necrotic crown tissue of inoculated plants. To our knowledge, this is the first report of R. solani AG-IV causing a disease of sunflower plants in India. References: (1). R. C. Fenille et al. Plant Pathol. 54:325, 2005. (2). J. R. Parmeter et al. Phytopathology 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St Paul, MN, 1991.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 432-432 ◽  
Author(s):  
P. Jimenez ◽  
T. A. Zitter

In early August 2004, pumpkin and zucchini squash (Cucurbita pepo) plants grown in conventional and organic commercial operations in Orange and Dutchess counties, respectively, showed spindle-shaped lesions on vegetative tissues and silver russeting and spots on fruit, typical of Plectosporium blight. Approximately 20% of pumpkin fruit were affected at this early time in yield development, while the zucchini planting had been abandoned due to disease. Symptomatic pieces of stem, petioles, and main leaf veins were excised, surface disinfected with 0.5% sodium hypochlorite, placed on one-quarter-strength potato dextrose agar, and incubated at 21°C with a 12-h photoperiod. Pale pink colonies with pinkish, hyaline, aerial mycelium developed from the tissues. When examined microscopically, simple and branched conidiophores with apical phialides were observed, as well as non- and one-septate ellipsoidal to slightly curved conidia that measured 7.5 to 13.0 × 2.5 to 3.3 μm. The fungus fits the description of Plectosporium tabacinum (van Beyma) M.E. Palm, W. Gams, & H.I. Nirenberg (synonyms Microdochium tabacinum (von Arx, 1984) and Fusarium tabacinum (Gams & Gerlagh, 1968) (1). Pathogenicity was tested on 10 seedlings each of pumpkin, zucchini, gourd (C. pepo), winter squash (C. moschata), and cucumber (Cucumis sativa). Plants were spray inoculated at the three true-leaf stage with a spore suspension at 104 conidia/ml in water with 1% gelatin. Plants were held overnight in a moist chamber and then transplanted into 12-cm-diameter pots and kept in the greenhouse for the rest of the experiment. P. tabacinum was reisolated from all inoculated plants which completes Koch's postulates. Symptoms were noted 3 days after inoculation on pumpkin, zucchini, and gourd, with typical spindle-shaped lesions on the main stem, petioles, and main leaf veins (2). Symptoms developed after 1 week on winter squash, and lesions were mostly concentrated on the older portion of the stem with occasional lesions on the petiole and main leaf veins. Symptoms on cucumber, however, did not develop until 2 weeks after inoculation and appeared as an inconspicuous line of coalesced lesions on the ridges of the main stem only. These symptoms could easily be misidentified as physical abrasions from handling or from wind scarring. These results confirm the high susceptibility of C. pepo species, and indicate that other cucurbits are susceptible, albeit at a lower level. To our knowledge, this is the first report of P. tabacinum in New York. A voucher specimen has been deposited in the Cornell Plant Pathology Herbarium (Accession No. CUP 67504). References: (1) M. E. Palm et al. Mycologia 87:397, 1995; (2) T. A. Zitter. Microdochium blight. Page 28 in: Compendium of Cucurbit Diseases. T. A. Zitter, D. L. Hopkins, and C. E. Thomas, eds. The American Phytopathological Society, St. Paul, MN, 1996.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yaxing Li ◽  
Yangfan Feng ◽  
Cuiping Wu ◽  
Junxin Xue ◽  
Binbin Jiao ◽  
...  

During a survey of pathogenic oomycetes in Nanjing, China from June 2019 to October 2020, at least ten adjacent Rhododendron pulchrum plants at a Jiangjun Mountain scenic spot showed symptoms of blight, and crown and root discoloration . Symptomatic root tissues collected from three 6-year-old plants were rinsed with water, cut into 10-mm pieces, surface sterilized with 70% ethanol for 1 min, and plated onto 10% clarified V8 PARP agar (cV8A-PARP) containing pimaricin (20 mg/liter), ampicillin (125 mg/liter), rifampicin (10 mg/liter), and pentachloronitrobenzene (20 mg/liter). Four Pythium-like isolates were recovered after three days of incubation at 26°C, and purified using hyphal-tipping. Ten agar plugs (2×2 mm2) of each isolate were grown in 10 mL of 10% clarified V8 juice (cV8) in a 10 cm plate at 26°C for 3 days to produce mycelial mats, and then the cV8 was replaced with sterile water. To stimulate sporangial production, three to five drops of soil extract solution were added to each plate. Sporangia were terminal, ovoid to globose, and the size is 24 to 45.6 (mean 34.7) (n=10.8) in length x 23.6 to 36.0 (mean 29.8) (n=6.2) in width. Gametangia were not observed in cV8A or liquid media after 30 days. For colony morphology, the isolates were sub-cultured onto three solid microbial media (cV8A-PARP, potato dextrose agar, corn meal agar) . All isolates had identical morphological features in the three media. Complete ITS and partial LSU and cox2 gene regions were amplified using primer pairs ITS1/ITS4, NL1/NL4, and FM58/FM66 , respectively. The ITS, LSU, and cox2 sequences of isolate PC-dj1 (GenBank Acc. No. MW205746, MW208002, MW208003) were 100.00% (936/936 nt), 100.00% (772/772 nt), and 99.64% (554/556 nt) identical to those of JX985743, MT042003, and GU133521, respectively. We built a maximum-likelihood tree of Phytopythium species using the concatenated dataset (ITS, LSU, cox2) to observe interspecific differences. Based on the morphological characters and sequences, isolate PC-djl was identified as Phytopythium litorale . As the four isolates (PC-dj1, PC-dj2, PC-dj3 and PC-dj4) tested had identical morphological characters and molecular marker sequences, the pathogenicity of the representative isolate, PC-dj1, was tested using two inoculation methods on ten one-year-old R. pulchrum plants. For the first inoculation method, plants were removed from the pot, and their roots were rinsed with tap water to remove the soil. Each of these plants was placed in a glass flask containing 250 mL of sterile water and 10 blocks (10 x 10 mm2) of mycelial mats harvested from a three-day-old culture of P. litorale, while the other plant was placed in sterile water as a control, and incubated at 26°C. After three days, symptoms including crown rot, root rot and blight was observed on the inoculated plants whereas the control remained asymptomatic. For the second inoculation method, ten plants were dug up to expose the root ball. Ten three-day-old cV8A plugs (5×5 mm2) from a PC-dj1 culture or sterile cV8A plugs were evenly insert into the root ball of a plant before it was planted back into the original pots. Both plants were maintained in a growth chamber set at 26°C with a 12/12 h light/dark cycle and irrigated as needed. After 14 to 21 days, the inoculated plant had symptoms resembling those in the field , while the control plant remained asymptomatic. Each inoculation method was repeated at triplicate and the outcomes were identical. Phytopythium isolates with morphological features and sequences identical to those of PC-dj1 were recovered from rotted crown and root tissues of all inoculated plants. Previously, P. litorale was found causing diseases of apple and Platanus orientalis in Turkey, fruit rot and seedling damping-off of yellow squash in southern Georgia, USA. This is the first report of this species causing crown and root rot on R. pulchrum, an important ornamental plant species in China. Additional surveys are ongoing to determine the distribution of P. litorale in the city of Nanjing.


1977 ◽  
Vol 17 (89) ◽  
pp. 998 ◽  
Author(s):  
JAG Irwin

Lucerne disease surveys made in southern Queensland have shown the presence of seven fungal root and crown diseases. The two most wide spread and serious diseases are Phytophthora root rot (Phytophthora megasperma) and Colletotrichum crown rot (Colletotrichum trifolii). The general disease survey did not reveal the presence of bacterial wilt (Corynebacterium insidiosum) in Queensland. Studies made on the survival of lucerne populations for 2.5 years at three sites in Queensland have shown that disease was the major cause of all detected plant deaths.


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 593-593 ◽  
Author(s):  
G. S. Karaoglanidis ◽  
D. A. Karadimos ◽  
K. Klonari

A severe rot of sugar beet roots was observed in the Amyndeon area of Greece during summer 1998. Infected plants initially showed a temporary wilt, which became permanent, and finally died. Slightly diseased roots showed necrotic spots toward the base, whereas more heavily diseased roots showed a more extensive wet rot that extended upward. Feeder roots also were infected and reduced in number because of decay. Rotted tissue was brown with a distinguishing black margin. In most of the isolations, carried out on potato dextrose agar (PDA), the pathogen obtained was identified as Phytophthora cryptogea Pethybr. & Lafferty Mycelium consisted of fairly uniform, fine hyphae that showed a slightly floral growth pattern. In autoclaved soil-extract medium, chains or clusters of hyphal swellings (average 12 µm diameter) formed. Sporangia were not produced on solid media but were abundant in soil-extract medium. Sporangia were oval to obpyriform in shape, nonpapillate with rounded bases, and varied in size (39 to 80 × 24 to 40 µm). Oospores were plerotic, thick-walled, and averaged 25 µm in diameter. The isolated pathogen, cultured on PDA, could not grow at all at 36°C. The closely related species P. drechsleri Tucker has been reported to cause similar root rot symptoms on sugar beet (3). However, P. drechsleri grows well at 36°C, while P. cryptogea cannot grow at this temperature; this is the major distinguishing feature that separates the two species (1). To test the pathogenicity of the organism, surface-sterilized sugar beet roots (cv. Rizor) were inoculated with 5-mm-diameter PDA plugs containing actively growing mycelium. Sterile PDA plugs were used to inoculate control sugar beet roots. Inoculated roots were kept at 27°C in the dark for 10 days. Extensive decay of inoculated roots developed, similar to decay observed in the field, whereas control roots showed no decay. P. cryptogea was reisolated from rotted tissues. This pathogen has been recognized previously as a cause of root rot of sugar beet in Japan (1) and Wyoming (2). This is the first report of Phytophthora root rot of sugar beet in Greece. References: (1) D. C. Erwin and O. K. Ribeiro. 1996. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN. (2) P. C. Vincelli et. al. Plant Dis. 74:614, 1990. (3) E. D. Whitnew and J. E. Duffus, eds. 1986. Compendium of Beet Diseases and Insects. The American Phytopathological Society, St. Paul, MN.


HortScience ◽  
2017 ◽  
Vol 52 (11) ◽  
pp. 1471-1476 ◽  
Author(s):  
Gregory T. Browne

Many species of Phytophthora de Bary are important pathogens of cultivated Prunus L. species worldwide, often invading the trees via their rootstocks. In a series of greenhouse trials, resistance to Phytophthora was tested in new and standard rootstocks for cultivated stone fruits, including almond. Successive sets of the rootstocks, propagated as hardwood cuttings or via micropropagation, were transplanted into either noninfested potting soil or potting soil infested with Phytophthora cactorum (Lebert & Cohn) J. Schöt., Phytophthora citricola Sawada, Phytophthora megasperma Drechs, or Phytophthora niederhauserii Z.G. Abad & J.A. Abad. Soil flooding was included in all trials to facilitate pathogen infection. In some trials, soil flooding treatments were varied to examine their effects on the rootstocks in both the absence and presence of Phytophthora. Two to 3 months after transplanting, resistance to the pathogens was assessed based on the severity of root and crown rot. ‘Hansen 536’ was consistently more susceptible than ‘Lovell’, ‘Nemaguard’, ‘Atlas’, ‘Viking’, ‘Citation’, and ‘Marianna 2624’ to root and/or crown rot caused by P. cactorum, P. citricola, and P. megasperma. By contrast, susceptibility to P. niederhauserii was similarly high among all eight tested genotypes of peach, four genotypes of peach × almond, two genotypes of (almond × peach) × peach, and one genotype of plum × almond. Most plum hybrids were highly and consistently resistant to crown rot caused by P. niederhauserii, but only ‘Marianna 2624’ was highly resistant to both crown and root rot caused by all of the Phytophthora species. The results indicate that there is a broad tendency for susceptibility of peach × almond rootstocks and a broad tendency for resistance of plum hybrid rootstocks to multiple species of Phytophthora.


Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 905-905
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Skimmia japonica, an evergreen flowering shrub, is becoming increasingly popular as a potted ornamental plant in northern Italy and represents 5% of acidophilous plant production; cv. Rubella accounts for 99% of production. During the spring of 2003, in many commercial nurseries located in northwestern Italy, plants of S. japonica cv. Rubella showed extensive chlorosis and root rot, and diseased plants eventually wilted and died without dropping leaves. The disease was widespread and severe, and in some nurseries, 40% of plants were affected. A Phytophthora-like organism was isolated consistently from infected lower stem and root pieces of S. japonica that had been disinfested for 1 min in 1% NaOCl and plated on a medium selective for oomycetes (2). The pathogen was identified based on morphological and physiological features as Phytophthora nicotianae (= P. parasitica [1]). The sporangia produced on V8 medium were ± spherical to obpyriform, obturbinate, papillate, and measured 33 to 94 × 25 to 48 μm (average 56.4 × 36.8 μm). Papillae measured 3.5 to 19 μm (average 7.8 μm). Chlamydospores were spherical with a diameter ranging from 26 to 32 μm (average 29.2 μm). Pathogenicity of four isolates obtained from infected plants was confirmed by inoculating 9-month-old plants of S. japonica cv. Rubella grown in 1-liter pots containing a substrate based on sphagnum peatmoss, pine bark, and clay (70-20-10% vol/vol/vol). Inocula, which consisted of 90-mm-diameter V8 agar disks per pot containing mycelium of each isolate, were introduced and mixed into the substrate in all pots before transplanting. One plant was transplanted into each pot and served as a replicate, and noninoculated plants served as controls. Eight replicates were used for each isolate and the control treatment, and the trial was repeated. All plants were kept outside at temperatures ranging from 16 to 38°C (average temperature 27°C). Inoculated plants developed symptoms of chlorosis, root rot, and wilt within 20 days, while control plants remained symptomless. P. nicotianae consistently was isolated from inoculated plants. Previously, P. nicotianae has been reported on S. japonica in Poland (3). To our knowledge, this is the first report of P. nicotianae on S. japonica in Italy. References: (1) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St Paul, MN, 1996. (2) H. Masago et al. Phytopathology, 67:425, 1977 (3) G. Szkuta and L. B. Orlikowski. Prog. Plant Prot. 42:808, 2002.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahuai Hu

During August and September 2020, symptoms of leaf chlorosis, stunting, and wilting were observed on indoor hemp plants (Cannabis sativa L. cv. ‘Wedding Cake’) in a commercial indoor facility located in Coolidge, Arizona. Plants were grown in soilless coconut coir growing medium (Worm Factory COIR250G10), watered with 1.5 to 2.1 liters every 24 h through drip irrigation, and supplemented with 18 h of lighting. About 35% of plants displayed symptoms as described above and many symptomatic plants collapsed. To identify the causal agent, crown and root tissues from four symptomatic plants were harvested and rinsed with tap water. Tissue fragments (approx. 2 to 4 mm in size) were excised from the margins of the stem and root lesions, surface sterilized in 0.6% sodium hypochlorite for 1 min, rinsed well in sterile distilled water, blotted dry, and plated on potato dextrose agar (PDA) and on oomycete-selective clarified V8 media containing pimaricin, ampicillin, rifampicin, and pentachloronitrobenzene (PARP). Plates were incubated at room temperature (21-24 oC). Five isolates resembling Pythium were transferred after 3 days and maintained on clarified V8 media. Morphological characteristics were observed on grass blade cultures (Waterhouse 1967). Grass blades were placed on CV8 inoculated with the isolate. After a 1-day incubation at 25°C, the colonized blades were transferred to 8 ml of soil water extract in a Petri dish. Ten sporangia and oogonia were selected randomly and their diameters were measured under the microscope. Sporangia were mostly filamentous, undifferentiated or inflated lobulate, ranging from 7 to 17 µm in diameter. Knob-like appressoria were observed on branching clusters. Bulbous-like antheridia were formed on branched stalk with 1-8 antheridia per oogonium. Globose oogonia were terminal or intercalary and ranged from 21 to 33 µm in diameter. Globose oospores were mostly aplerotic and ranged from 15 to 21 μm in diameter. Based on these morphological characteristics, isolates were tentatively identified as Pythium myriotylum (Watanabe, 2002). Genomic DNA was extracted from mycelial mats of two isolates using DNeasy Plant Pro Kit (Qiagen Inc., Valencia, CA) according to the manufacturer’s instructions. The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS1/ITS4 and two identical nucleotide sequences were obtained and deposited under accession number MW380925. A BLASTn search revealed ≥ 98% query coverage and 100% match with sequences HQ237488.1, KY019264.1, and KM434129, which were isolates of P. myriotylum from palm, tobacco, and ginger, respectively. To fulfill Koch’s postulates, pathogenicity tests were conducted with 2 isolates using plants of ‘Wedding Cake’ grown in 12 1.9-liter pots filled with a steam-disinfested potting mix (Sungro Professional Growing Mix). Pots were placed in a plastic container and watered to flooding three times a week. Plants were maintained in a greenhouse with 18 h/10 h day/night supplemental light cycle (15-28 oC). Plants were fertilized weekly with Peters Professional fertilizer at 1mg/ml. Four plants were inoculated with each isolate at three weeks after seed sowing by placing two 5-mm mycelial plugs from active growing 4 days-old cultures on PDA media adjacent to the main root mass at an approximately 3 cm depth. Four plants were inoculated with blank PDA plugs as controls. Symptoms of leaf chlorosis, crown rot and wilting were observed after four weeks while control plants remained symptomless. P. myriotylum was re-isolated from necrotic roots of inoculated plants after surface-sterilization, but not from control plants. The pathogenicity test was repeated once. While P. myriotylum often occurs in warmer regions and has a wide host range of >100 host plant species including numerous economically important crops (Wang et al., 2003), there are only two reports of this pathogen on indoor hemp plants in a greenhouse in Connecticut (McGehee et al., 2019) and in Canada (Punja et al., 2019). This is the first report of P. myriotylum causing root and crown rot of indoor hemp in Arizona. A more careful water management in soilless growth medium to reduce periods of saturation would minimize the risk of Pythium root rot in indoor hemp production.


Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 848-848
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Daphne odora is becoming popular in gardens because of its variegated foliage and fragrant flowers in late winter and early spring. During October of 2008 in a commercial nursery near Maggiore Lake (Verbano-Cusio-Ossola Province) in northwestern Italy, plants of D. odora showed extensive chlorosis and root rot. Diseased plants eventually wilted and died, dropping leaves in some cases. Most frequently, wilted leaves persisted on stems. At the soil level, dark brown-to-black water-soaked lesions that coalesced often girdled the stem. All of the crown and root system was affected. Disease was widespread and severe with 70% of 2,500 potted plants being affected. A Phytophthora-like organism was isolated consistently on a medium selective for oomycetes (4) after disinfestation of lower stem and root pieces of D. odora for 1 min in a solution containing 1% NaOCl. Tissue fragments of 1 mm2 were excised from the margins of the lesions and plated. The pathogen was identified based on morphological and physiological features as Phytophthora nicotianae (= P. parasitica) (2). Sporangia were produced for identification by growing a pure culture in sterilized soil extract solution at neutral pH (obtained by shaking and then centrifuging 300 g of soil in 1 liter of distilled water). They were spherical to ovoid, papillate, and measured 39.2 to 54.5 × 31.7 to 41.7 μm (average 44.8 × 34.5 μm). Papillae measured 2.4 to 4.9 μm (average 3.7 μm). Chlamydospores were spherical with a diameter ranging from 15.8 to 36.1 μm (average 25.4 μm). The internal transcribed spacer (ITS) region of rDNA of a single isolate was amplified using primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 804-bp segment showed a 100% homology with the sequence of P. nicotianae EF140988. The nucleotide sequence has been assigned GenBank No. FJ843100. Pathogenicity of two isolates obtained from infected plants was confirmed by inoculating 12-month-old plants of D. odora. Both isolates were grown for 15 days on a mixture of 70:30 wheat/hemp kernels and then 80 g/liter of the inoculum was mixed into a substrate containing sphagnum peat moss/pumice/pine bark/clay (50:20:20:10 vol/vol). One plant per 3-liter pot was transplanted into the substrate and constituted the experimental unit. Three replicates were used for each isolate and noninoculated control treatment; the trial was repeated once. All plants were kept in a greenhouse at temperatures from 20 to 25°C. Plants inoculated with isolate no. 1 developed symptoms of chlorosis and root rot within 14 days and then a wilt rapidly followed. Isolate no. 2 was less aggressive causing the same symptoms within 20 days. Control plants remained symptomless. P. nicotianae consistently was reisolated from inoculated plants. Previously, P. nicotianae (= P. parasitica) has been reported in several states of the United States on D. odora (3). To our knowledge, this is the first report of P. nicotianae on D. odora in Italy. The economic importance of the disease is low because of the limited number of farms that grow this crop in Italy, although spread could increase as the popularity of plantings expand. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St Paul, MN, 1996. (3) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (4) H. Masago et al. Phytopathology, 67:425, 1977.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 434-434 ◽  
Author(s):  
J. Mertely ◽  
T. Seijo ◽  
N. Peres

Strawberry (Fragaria × ananassa Duchesne) is produced as an annual winter crop in raised, plastic-mulched beds on 2,800 ha in west central Florida. In December 2001, a grower submitted collapsed and dying strawberry plants from a commercial field to the University of Florida in Dover. The cut crowns of affected plants revealed dark brown necrotic areas on the margins and along the woody vascular ring. Macrophomina phaseolina was isolated from pieces of infected tissue cut aseptically from the crowns and placed on a medium containing 12 g of Difco potato dextrose broth, 17 g of Bacto agar, 250 mg of ampicillin, and 100 mg of streptomycin sulfate per liter of water. The fungus produced numerous, dark, oblong sclerotia in the isolation medium after 4 to 5 days incubation at 24°C under constant fluorescent lighting. In 10-day-old cultures, sclerotia ranged in size from 55 to 190 μm long by 50 to 135 μm wide (average 105 × 74 μm). Ostiolate pycnidia bearing relatively large, broadly ellipsoidal, hyaline conidia occasionally developed on the host tissue after 8 to 10 days of incubation (2). During the 2003-2004 season, M. phaseolina was isolated from dying strawberry plants taken from the original field and two additional farms. Affected plants were often found along field margins or other areas inadequately fumigated with methyl bromide. Two single-spore isolates from different fields were tested for pathogenicity on nursery runner plants (cv. Strawberry Festival) grown for 4 weeks in the greenhouse on artificial potting soil. The fungal isolates were grown on corn meal agar at 24°C for 4 days and allowed to colonize sterile wooden toothpicks placed on the medium for an additional 5 days. Prior to use, the toothpicks were sterilized by autoclaving twice in deionized water and a third time in V8 juice. Six plants were inoculated with each isolate by inserting a colonized toothpick into each crown. Sterile, V8-infused toothpicks were inserted into the crowns of corresponding control plants. The plants were incubated in a greenhouse in a randomized complete block design with two replicates of three plants each. After 3 days, 33 to 100% of the inoculated plants developed wilting in one or more leaves. All inoculated plants collapsed or died within 2 weeks of inoculation, while the control plants remained healthy during the observation period. The pathogen was readily reisolated from inoculated plants. Charcoal rot disease caused by M. phaseolina has been reported on strawberry in France, India, and Illinois (2,3). To our knowledge, this is the first report from Florida. M. phaseolina may be an emerging threat as the Florida strawberry industry transitions from methyl bromide to other fumigants in 2005. References: (1) J. Maas. Macrophomina leaf blight and dry crown rot. Page 26 in: Compendium of Strawberry Diseases. 2nd ed. J. L. Maas, ed. The American Phytopathological Society, St. Paul, MN, 1998. (2) G. S. Smith and T. D. Wyllie. Charcoal rot. Pages 29–31 in: Compendium of Soybean Diseases. G. L. Hartman et al., eds. 4th ed. The American Phytopathological Society, St. Paul, MN. 1999. (3) B. Tweedy et al. Plant Dis. Rep. 42:107, 1958.


Sign in / Sign up

Export Citation Format

Share Document