scholarly journals Dissecting the economic impact of soybean diseases in the United States over two decades

2019 ◽  
Author(s):  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Carl A. Bradley ◽  
Tom W. Allen ◽  
Paul D. Esker

ABSTRACTSoybean (Glycine max L. Merrill) is a key commodity for United States agriculture. Here we analyze the economic impacts of 23 common soybean diseases in 28 soybean-producing states in the U.S., from 1996 to 2016. From 1996 to 2016, the total estimated economic loss due to soybean diseases in the U.S. was $81.39 billion, with $68.98 billion and $12.41 billion accounting for the northern and southern U.S. losses, respectively. Across states and years, soybean cyst nematode, charcoal rot, and seedling diseases were the most economically damaging pathogens/diseases while soybean rust, bacterial blight, and southern blight were the least economically damaging. Significantly positive linear correlation of mean soybean yield loss with the mean state-wide soybean production (MT) and mean soybean yield (kg ha−1) indicated that high production zones are more vulnerable to soybean diseases-associated yield losses. Our findings provide useful insights into how research, policy, and educational efforts should be prioritized in soybean disease management.

2017 ◽  
Vol 18 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Tom W. Allen ◽  
Carl A. Bradley ◽  
Adam J. Sisson ◽  
Emmanuel Byamukama ◽  
Martin I. Chilvers ◽  
...  

Annual decreases in soybean (Glycine max L. Merrill) yield caused by diseases were estimated by surveying university-affiliated plant pathologists in 28 soybean-producing states in the United States and in Ontario, Canada, from 2010 through 2014. Estimated yield losses from each disease varied greatly by state or province and year. Over the duration of this survey, soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) was estimated to have caused more than twice as much yield loss than any other disease. Seedling diseases (caused by various pathogens), charcoal rot (caused by Macrophomina phaseolina (Tassi) Goid), and sudden death syndrome (SDS) (caused by Fusarium virguliforme O’Donnell & T. Aoki) caused the next greatest estimated yield losses, in descending order. The estimated mean economic loss due to all soybean diseases, averaged across U.S. states and Ontario from 2010 to 2014, was $60.66 USD per acre. Results from this survey will provide scientists, breeders, governments, and educators with soybean yield-loss estimates to help inform and prioritize research, policy, and educational efforts in soybean pathology and disease management.


Author(s):  
Carl A. Bradley ◽  
Tom Allen ◽  
Adam J. Sisson ◽  
Gary C. Bergstrom ◽  
Kaitlyn M. Bissonnette ◽  
...  

Soybean [Glycine max (L.) Merrill] yield losses as a result of plant diseases were estimated by university and government plant pathologists in 29 soybean-producing states in the United States and in Ontario, Canada, from 2015 through 2019. In general, the estimated losses that resulted from each of 28 plant diseases or pathogens varied by state or province as well as year. Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) caused more than twice as much loss than any other disease during the survey period. Seedling diseases (caused by various pathogens), Sclerotinia stem rot (white mold) (caused by Sclerotinia sclerotiorum [Lib.] de Bary), and sudden death syndrome (caused by Fusarium virguliforme O'Donnell & T. Aoki) caused the next greatest yield losses, in descending order. Following SCN, the most damaging diseases in the northern U.S. and Ontario differed from those in the southern U.S. The estimated mean economic loss from all soybean diseases, averaged across the U.S. and Ontario, Canada was $45 U.S. dollars per acre ($111 per hectare). The outcome from the current survey will provide pertinent information regarding the important soybean diseases and their overall severity in the soybean crop and help guide future research and Extension efforts on managing soybean diseases.


2010 ◽  
Vol 11 (1) ◽  
pp. 5 ◽  
Author(s):  
Stephen R. Koenning ◽  
J. Allen Wrather

Research must focus on management of diseases that cause extensive losses, especially when funds for research are limited. Knowledge of the losses caused by various soybean diseases is essential when prioritizing research budgets. The objective of this project was to compile estimates of soybean yield potential losses caused by diseases for each soybean producing state in the United States from 2006 to 2009. This data is of special interest since the 4-year period summarized in this report, permits an examination of the impact of soybean rust that was first reported in the United States in 2004. Thus, in addition to the goal of providing this information to aid funding agencies and scientists in prioritizing research objectives and budgets, an examination of the impact of soybean rust on soybean yield losses relative to other diseases is warranted. Yield losses caused by individual diseases varied among states and years. Soybean cyst nematode caused more yield losses than any other disease during 2006 to 2009. Seedling diseases, Phytophthora root and stem rot, sudden death syndrome, Sclerotinia stem rot, and charcoal rot ranked in the top six of diseases that caused yield loss during these years. Soybean yield losses due to soybean rust and Sclerotinia stem rot varied greatly over years, especially when compared to other diseases. Accepted for publication 21 October 2010. Published 22 November 2010.


2009 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Allen Wrather ◽  
Steve Koenning

Research must focus on management of diseases that cause extensive losses, especially when funds for research are limited. Knowledge of yield suppression caused by various soybean diseases is essential when prioritizing research. The objective of this project was to compile estimates of soybean yield suppression due to diseases in the USA from 1996 to 2007. The goal was to provide information to help funding agencies and scientists prioritize research objectives and budgets. Yield suppression due to individual diseases varied among years. Soybean cyst nematode suppressed USA soybean yield more from 1996 to 2007 than any other disease. Phytophthora root and stem rot ranked second among diseases that most suppressed yield seven of 12 years. Seedling diseases and charcoal rot also suppressed soybean yield during these years. Research and extension efforts must be expanded to provide more preventive and therapeutic disease management strategies for producers to reduce disease suppression of soybean yield. Accepted for publication 25 February 2009. Published 1 April 2009.


2003 ◽  
Vol 4 (1) ◽  
pp. 24 ◽  
Author(s):  
J. A. Wrather ◽  
S. R. Koenning ◽  
T. R. Anderson

Soybean yields in the U.S. and Ontario have often been suppressed by diseases. The resulting losses are important to rural economies and to the economies of allied industries in urban areas. The authors compiled estimates of soybean yield losses due to diseases for each soybean producing state in the U.S. and Ontario from 1999 to 2002. The goal was to provide this information to help funding agencies and scientists prioritize research objectives and budgets. Accepted for publication 4 March 2003. Published 25 March 2003.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 972-972 ◽  
Author(s):  
L. E. Sconyers ◽  
R. C. Kemerait ◽  
J. H. Brock ◽  
R. D. Gitaitis ◽  
F. H. Sanders ◽  
...  

Phakopsora pachyrhizi Syd. & P. Syd., which causes Asian soybean rust (SBR), was observed on Florida beggarweed, Desmodium tortuosum (Sw) DC., in Attapulgus, GA during late October and early November 2005. Tan to brown lesions (<1.0 mm in diameter) consistent with symptoms of SBR (2) were observed on older leaves of several plants collected near an SBR-infected soybean trial. Dissection (40 to 60×) and compound microscopy (×200 to 400) revealed conical pustules and ellipsoid, echinulate urediniospores (average size 15 × 20 μm) on the abaxial leaf surface. Polymerase chain reaction (PCR) (primers Ppm1 and Ppa2) (1) was conducted on four samples to confirm identification of P. pachyrhizi or P. meibomiae. Three were positive for P. pachyrhizi, and one was negative for both species. Using morphology and real-time PCR, SBR was confirmed as P. pachyrhizi by the USDA/APHIS in Beltsville, MD. Six noninfected Florida beggarweed plants were transplanted to pots during December 2005 and grown at 22 to 24°C in a greenhouse. On 11 January 2006, a water suspension of urediniospores collected from SBR-infected soybeans (1 × 105 spores per ml) was spray inoculated on all leaves to almost runoff and incubated for 48 h in a plastic humidity chamber. Lesions, pustules, and urediniospores consistent with SBR (2) were observed on 3 February 2006. A PCR assay was conducted on six samples from the infected greenhouse plants and all were positive for P. pachyrhizi. Florida beggarweed is widespread in the southern United States and may serve as an additional overwintering source for P. pachyrhizi and a potential inoculum source for the soybean crop. References: (1) R. D. Fredrick et al. Phytopathology 92:217, 2002. (2) J. B. Sinclair and G. L. Hartman. Soybean rust. Pages 25–26 in: Compendium of Soybean Diseases. 4th ed. G. L. Hartman et al., eds. The American Phytopathological Society, St. Paul, MN, 1999.


Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 593-598 ◽  
Author(s):  
M. R. Bonde ◽  
S. E. Nester ◽  
W. F. Moore ◽  
T. W. Allen

Soybean rust, caused by Phakopsora pachyrhizi, was first discovered in the continental United States in the fall of 2004. The potential for economic loss in the United States hinges largely on whether or not the pathogen can survive winters in the absence of soybean. Kudzu (Pueraria lobata) is known to be a host for P. pachyrhizi in Asia and South America and is widely distributed in the southern United States. This study examined reactions of kudzu collected from several areas of the southeastern United States to three isolates of P. pachyrhizi, one each from Alabama, Louisiana, and Brazil. Susceptible tan (TAN) lesions, resistant reddish-brown (RB) lesions, and immune (IM) response, previously described on soybean, were produced on kudzu based on the evaluation of 125 plants. However, in contrast to soybean, the RB response on kudzu was common, with approximately 50% frequency. IM responses to at least one isolate were observed on five individual plants, and two plants were immune to all three pathogen isolates used in the test. TAN lesions averaged 3.2 uredinia per lesion with an average diameter per uredinium of 121 μm. In contrast, RB lesions had an average of 0.3 uredinia per lesion with an average uredinial diameter of 77 μm. In 25 of 39 (64%) instances in which multiple plants were tested from a site, each reacted the same to the individual pathogen isolates. This suggested a tendency for plants at specific sites to be genetically identical with respect to rust reaction. Only 19 of 125 (15%) individual plants produced a different reaction to one isolate than to the other two isolates. When four kudzu plants previously shown to produce only TAN lesions to P. pachyrhizi isolates Alabama 04-1, Brazil 01-1, and Louisiana 04-1 were inoculated with eight additional isolates from several areas of the world, all 11 isolates produced only TAN lesions. Likewise, when five other plants previously shown to produce only RB lesions when inoculated with the three isolates were inoculated with the 11 isolates, all produced only RB lesions. These results suggest that susceptibility or resistance to P. pachyrhizi in individual kudzu plants often is broad, extending over a wide range of P. pachyrhizi isolates.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mitchell G Roth ◽  
Richard W Webster ◽  
Daren S Mueller ◽  
Martin I Chilvers ◽  
Travis R Faske ◽  
...  

Abstract Soybean (Glycine max L.) is a major crop grown in the United States but is susceptible to many diseases that cause significant yield losses each year. Consistent threats exist across both northern and southern production regions and include the soybean cyst nematode, charcoal rot, and seedling diseases. In contrast, significant soybean diseases like Phytophthora stem and root rot, sudden death syndrome, and Sclerotinia stem rot (white mold) are intermittent threats that can be heavily influenced by environmental factors. Additional threats to soybean production that have emerged in recent years as more common problems in soybean production include root-knot and reniform nematodes, frogeye leaf spot, and Diaporthe diseases. Disease in any crop will only occur when the three components of the disease triangle are present: a susceptible host, a virulent pathogen, and a conducive environment. If an environment is becoming more conducive for a particular disease, it is important that farmers and practitioners are prepared to manage the problem. The information in this review was compiled to help assist agriculturalists in being proactive in managing new soybean diseases that may be emerging in new areas. To do this, we provide: 1) an overview of the impact and disease cycle for major soybean diseases currently causing significant yield losses in the United States, 2) a comprehensive review of the current management strategies for each soybean disease, and 3) insights into the epidemiology of each pathogen, including the likelihood of outbreaks and expansion to additional geographic regions based on current trends in climate change.


2006 ◽  
Vol 96 (4) ◽  
pp. 400-407 ◽  
Author(s):  
Shimon Pivonia ◽  
X. B. Yang

Soybean rust, Phakopsora pachyrhizi, has been considered a threat to the production of the U.S. soybean, Glycine max. During the past decade, this disease gradually spread to Africa, South America, and recently to the United States. Previous soybean rust risk assessments with an assumption of availability of spores early in a season showed that weather conditions (dew and temperature) during a growing season, in general, are suitable for disease development in U.S. soybean-growing regions. Predicting the time of rust appearance in a field is critical to determining the destructive potential of rusts, including soybean rust. In this study, comparative epidemiology was used to assess likely rust incipient time in four locations within the U.S. Soybean Belt from south to north: Baton Rouge, LA; Charlotte, NC; Indianapolis, IN; and Minneapolis, MN. Temperature effects on the infection cycle of five rusts occurring in the Midwest were evaluated using a general disease model. The likely incipient times were examined with the modeling results. Among the rusts studied, early-appearing rusts had suitable conditions for development earlier in a season. However, a lag period of several weeks to more than 3 months was found from the time when conditions are suitable for a rust to develop or when hosts are available to the time when the rust was detected in fields. Length of the lag period differed among the rust species examined. If nature of long-distance dispersal is not significantly different among the rusts, implications of our study to the expected seasonal soybean rust incipience in fields lead to two possible scenarios: (i) average appearance time of soybean rust across the Soybean Belt should be somewhere between appearance times of common corn rust and southern corn rust, and (ii) with late appearance of the disease, late-planted soybean in the south has greater risk.


2020 ◽  
Vol 21 (4) ◽  
pp. 238-247
Author(s):  
Daren S. Mueller ◽  
Kiersten A. Wise ◽  
Adam J. Sisson ◽  
Tom W. Allen ◽  
Gary C. Bergstrom ◽  
...  

Annual reductions in corn (Zea mays L.) yield caused by diseases were estimated by university Extension-affiliated plant pathologists in 26 corn-producing states in the United States and in Ontario, Canada, from 2016 through 2019. Estimated loss from each disease varied greatly by state or province and year. Gray leaf spot (caused by Cercospora zeae-maydis Tehon & E.Y. Daniels) caused the greatest estimated yield loss in parts of the northern United States and Ontario in all years except 2019, and Fusarium stalk rot (caused by Fusarium spp.) also greatly reduced yield. Tar spot (caused by Phyllachora maydis Maubl.), a relatively new disease in the United States, was estimated to cause substantial yield loss in 2018 and 2019 in several northern states. Gray leaf spot and southern rust (caused by Puccinia polysora Underw.) caused the most estimated yield losses in the southern United States. Unfavorable wet and delayed harvest conditions in 2018 resulted in an estimated 2.5 billion bushels (63.5 million metric tons) of grain contaminated with mycotoxins. The estimated mean economic loss due to reduced yield caused by corn diseases in the United States and Ontario from 2016 to 2019 was US$55.90 per acre (US$138.13 per hectare). Results from this survey provide scientists, corn breeders, government agencies, and educators with data to help inform and prioritize research, policy, and educational efforts in corn pathology and disease management.


Sign in / Sign up

Export Citation Format

Share Document