Identification and Validation of Quantitative Trait Loci for Partial Resistance to Crown Rust in Oat

2010 ◽  
Vol 100 (5) ◽  
pp. 511-521 ◽  
Author(s):  
M. Acevedo ◽  
E. W. Jackson ◽  
J. Chong ◽  
H. W. Rines ◽  
S. Harrison ◽  
...  

Management of oat crown rust disease with host resistance is challenging because major gene resistance is generally short lived. Partially resistant oat cultivars could benefit oat growers by providing more durable resistance. The objective of this study was to validate and discover quantitative trait loci (QTL) affecting crown rust resistance in the partially resistant oat line MN841801-1 using conventional and molecular assessments of disease produced in single-race greenhouse inoculations, single-race polycyclic field tests, and under natural infection in disease-conducive environments. Crown rust was assessed on 150 F6:9 MN841801-1/‘Noble-2’ recombinant inbred lines. In total, eight QTL associated with MN841801-1 alleles were detected. Of these, seven matched QTL previously identified while a new QTL (Prq8) was detected on linkage group MN13. Four QTL (Prq1a, Prq2, Prq7, and Prq8) were consistently detected and predicative genetic assays for these QTL should be developed for future validation in additional genetic backgrounds.

2017 ◽  
Vol 155 (8) ◽  
pp. 1263-1271 ◽  
Author(s):  
W. L. TENG ◽  
W. J. FENG ◽  
J. Y. ZHANG ◽  
N. XIA ◽  
J. GUO ◽  
...  

SUMMARYLutein benefits human health significantly, including that of the eyes, skin and heart. Therefore, increasing lutein content in soybean seeds is an important objective for breeding programmes. However, no information about soybean lutein-related quantitative trait loci (QTL) has been reported, as of 2016. The aim of the present study was to identify QTLs underlying the lutein content in soybean seeds. A population including 129 recombinant inbred lines was developed from the cross between ‘Dongnong46’ (lutein 13·10 µg/g) and ‘L-100’ (lutein 23·96 µg/g), which significantly differed in seed lutein contents. This population was grown in ten environments including Harbin in 2012, 2013, 2014 and 2015; Hulan in 2013, 2014 and 2015; and Acheng in 2013, 2014 and 2015. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. In the present study, eight QTLs associated with lutein content were found initially, which could explain 1·01–19·66% of the observed phenotypic variation in ten different tested environments. The phenotypic contribution of qLU-1 (located near BARC-Satt588 on chromosome 9 (Chr 9; linkage group (LG) K)) was >10% across seven tested environments, while qLU-2 (located near Satt192 of Chr 12 (LG H)) and qLU-3 (located near Satt353 of Chr12 (LGH)) could explain 5–10% of the observed phenotypic variation in more than seven environments, respectively. qLU-5, qLU-6, qLU-7 and qLU-8 could be detected in more than four environments. These eight QTLs were novel, and have considerable potential value for marker-assistant selection of higher lutein content in soybean lines.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1117
Author(s):  
Pragya Adhikari ◽  
James McNellie ◽  
Dilip R. Panthee

Tomato (Solanum lycopersicum L.) is the second most-consumed vegetable in the world. The market value and culinary purpose of tomato are often determined by fruit size and shape, which makes the genetic improvement of these traits a priority for tomato breeders. The main objective of the study was to detect quantitative trait loci (QTL) associated with the tomato fruit shape and size. The use of elite breeding materials in the genetic mapping studies will facilitate the detection of genetic loci of direct relevance to breeders. We performed QTL analysis in an intra-specific population of tomato developed from a cross between two elite breeding lines NC 30P × NC-22L-1(2008) consisting of 110 recombinant inbred lines (RIL). The precision software Tomato Analyzer (TA) was used to measure fruit morphology attributes associated with fruit shape and size traits. The RIL population was genotyped with the SolCAP 7720 SNP array. We identified novel QTL controlling elongated fruit shape on chromosome 10, explaining up to 24% of the phenotypic variance. This information will be useful in improving tomato fruit morphology traits.


2005 ◽  
Vol 112 (1) ◽  
pp. 195-197 ◽  
Author(s):  
V. A. Portyanko ◽  
G. Chen ◽  
H. W. Rines ◽  
R. L. Phillips ◽  
K. J. Leonard ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sumandeep K. Bazzer ◽  
Larry C. Purcell

Abstract A consistent risk for soybean (Glycine max L.) production is the impact of drought on growth and yield. Canopy temperature (CT) is an indirect measure of transpiration rate and stomatal conductance and may be valuable in distinguishing differences among genotypes in response to drought. The objective of this study was to map quantitative trait loci (QTLs) associated with CT using thermal infrared imaging in a population of recombinant inbred lines developed from a cross between KS4895 and Jackson. Heritability of CT was 35% when estimated across environments. QTL analysis identified 11 loci for CT distributed on eight chromosomes that individually explained between 4.6 and 12.3% of the phenotypic variation. The locus on Gm11 was identified in two individual environments and across environments and explained the highest proportion of phenotypic variation (9.3% to 11.5%) in CT. Several of these CT loci coincided with the genomic regions from previous studies associated with canopy wilting, canopy temperature, water use efficiency, and other morpho-physiological traits related with drought tolerance. Candidate genes with biological function related to transpiration, root development, and signal transduction underlie these putative CT loci. These genomic regions may be important resources in soybean breeding programs to improve tolerance to drought.


Sign in / Sign up

Export Citation Format

Share Document