advanced backcross population
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 873
Author(s):  
Nicholas N. Denwar ◽  
Charles E. Simpson ◽  
James L. Starr ◽  
Terry A. Wheeler ◽  
Mark D. Burow

Early and late leaf spot are two devastating diseases of peanut (Arachis hypogaea L.) worldwide. The development of a fertile, cross-compatible synthetic amphidiploid, TxAG-6 ([A. batizocoi × (A. cardenasii × A. diogoi)]4x), opened novel opportunities for the introgression of wild alleles for disease and pest resistance into commercial cultivars. Twenty-seven interspecific lines selected from prior evaluation of an advanced backcross population were evaluated for resistance to early and late leaf spot, and for yield in two locations in Ghana in 2006 and 2007. Several interspecific lines had early leaf spot scores significantly lower than the susceptible parent, indicating that resistance to leaf spot had been successfully introgressed and retained after three cycles of backcrossing. Time to appearance of early leaf spot symptoms was less in the introgression lines than in susceptible check cultivars, but the opposite was true for late leaf spot. Selected lines from families 43-08, 43-09, 50-04, and 60-02 had significantly reduced leaf spot scores, while lines from families 43-09, 44-10, and 63-06 had high pod yields. One line combined both resistance to leaf spot and high pod yield, and several other useful lines were also identified. Results suggest that it is possible to break linkage drag for low yield that accompanies resistance. However, results also suggest that resistance was diluted in many of the breeding lines, likely a result of the multigenic nature of resistance. Future QTL analysis may be useful to identify alleles for resistance and allow recombination and pyramiding of resistance alleles while reducing linkage drag.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zahirul I. Talukder ◽  
William Underwood ◽  
Christopher G. Misar ◽  
Gerald J. Seiler ◽  
Yuan Liu ◽  
...  

Basal stalk rot (BSR), caused by the fungus Sclerotinia sclerotiorum, is a serious disease of sunflower (Helianthus annuus L.) in the humid temperate growing areas of the world. BSR resistance is quantitative and conditioned by multiple genes. Our objective was to dissect the BSR resistance introduced from the wild annual species Helianthus argophyllus using a quantitative trait loci (QTL) mapping approach. An advanced backcross population (AB-QTL) with 134 lines derived from the cross of HA 89 with a H. argophyllus Torr. and Gray accession, PI 494573, was evaluated for BSR resistance in three field and one greenhouse growing seasons of 2017–2019. Highly significant genetic variations (p < 0.001) were observed for BSR disease incidence (DI) in all field screening tests and disease rating and area under the disease progress curve in the greenhouse. The AB-QTL population and its parental lines were genotyped using the genotyping-by-sequencing method. A genetic linkage map spanning 2,045.14 cM was constructed using 3,110 SNP markers mapped on 17 sunflower chromosomes. A total of 21 QTL associated with BSR resistance were detected on 11 chromosomes, each explaining a phenotypic variation ranging from 4.5 to 22.6%. Of the 21 QTL, eight were detected for BSR DI measured in the field, seven were detected for traits measured in the greenhouse, and six were detected from both field and greenhouse tests. Thirteen of the 21 QTL had favorable alleles from the H. argophyllus parent conferring increased BSR resistance.


2021 ◽  
Author(s):  
Tadesse S Gela ◽  
Stanley Adobor ◽  
Hamid Khazaei ◽  
Albert Vandenberg

AbstractGenetically accessible variation to some of the abiotic and biotic stresses are limited in the cultivated lentil (Lens culinaris Medik.) germplasm. Introgression of novel alleles from its wild relative species might be required for enhancing the genetic improvement of the crop. L. ervoides, one of the wild relatives of lentil, is a proven source of disease resistance for the crop. Here we introduce a lentil advanced backcross population (LABC-01) developed in cultivar CDC Redberry background, based on L. ervoides alleles derived from an interspecific recombinant inbred population, LR-59-81. Two-hundred and seventeen individuals of the LABC-01 population at BC2F3:4 generation were screened for the race 0 of anthracnose (Colletotrichum lentis) and stemphylium blight (Stemphylium botryosum) under controlled conditions. The population showed significant variations for both diseases and transfer of resistance alleles into the elite cultivar was evident. It also segregated for other traits such as days to flowering, seed coat colour, seed coat pattern and flower colour. Overall, we showed that LABC-01 population can be used in breeding programs worldwide to improve disease resistance and will be available as a valuable genetic resource for future genetic analysis of desired loci introgressed from L. ervoides.


2020 ◽  
Author(s):  
Haichao Jiang ◽  
Yutao Feng ◽  
Lei Qiu ◽  
Guanjun Gao ◽  
Qinglu Zhang ◽  
...  

Abstract Background: Rice blast is an economically important and mutable disease of rice. Using host resistance gene to breed resistant varieties has been proven to be the most effective and economical method to control rice blast and new resistance genes or quantitative trait loci (QTLs) are then needed.Results: In this study, we constructed two advanced backcross population to mapping blast resistance QTLs. CR071 and QingGuAi3 were as the donor parent to establish two BC3F1 and derived BC3F2 backcross population in the Jin23B background. By challenging the two populations with natural infection in 2011 and 2012, 16 and 13 blast resistance QTLs were identified in Jin23B/CR071 and Jin23B/QingGuAi3 population, respectively. Among Jin23B/CR071 population, 3 major and 13 minor QTLs have explained the phenotypic variation from 3.50% to 34.08% in two years. And, among Jin23B/QingGuAi3 population, 2 major and 11 minor QTLs have explained the phenotypic variation from 2.42% to 28.95% in two years.Conclusions: Sixteen and thirteen blast resistance QTLs were identified in Jin23B/CR071 and Jin23B/QingGuAi3 population, respectively. QTL effect analyses suggested that major and minor QTLs interaction is the genetic basis for durable blast resistance in rice variety CR071 and QingGuAi3.


PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0187553 ◽  
Author(s):  
Duo Xia ◽  
Hao Zhou ◽  
Lei Qiu ◽  
Haichao Jiang ◽  
Qinglu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document