scholarly journals Synergism of Pratylenchus penetrans and Verticillium dahliae Manifested by Reduced Gas Exchange in Potato

1997 ◽  
Vol 87 (4) ◽  
pp. 435-439 ◽  
Author(s):  
Ibrahim A. M. Saeed ◽  
Ann E. MacGuidwin ◽  
Douglas I. Rouse

The effects of solitary and concurrent infection by Pratylenchus pene-trans and Verticillium dahliae on gas exchange of Russet Burbank potato (Solanum tuberosum) were studied in growth chamber experiments. Treatments were P. penetrans at low, medium, and high density; V. dahliae alone at one initial density; the combination of the nematode at these three densities and V. dahliae; and a noninfested control. Gas exchange parameters of leaf cohorts of different ages in the different treatments were repeatedly measured with a Li-Cor LI-6200 portable photosynthesis system. At 45 days after planting, joint infection significantly reduced net photosynthesis, stomatal conductance, and transpiration of 1- to 25-day-old leaf cohorts. Intercellular CO2 levels were significantly increased by co-infection, especially in older leaves. The synergistic effect of co-infection on gas exchange parameters was greater in the oldest cohort than in the youngest cohort. No consistent effects on leaf gas exchange parameters were observed in plants infected by the nematode or the fungus alone. The relationship between the assimilation rate and stomatal conductance remained linear regardless of solitary or concomitant infection, indicating that stomatal factors are primarily responsible for regulating photosynthesis. The significant reduction of gas exchange in leaves of co-infected plants without reduction in intercellular CO2 concentrations suggests that nonstomatal factors also play a role when both organisms are present.

2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 1377-1381 ◽  
Author(s):  
J. P. Privé ◽  
L. Russell ◽  
A. LeBlanc

A field trial was conducted over two growing seasons in a Ginger Gold apple orchard in Bouctouche, New Brunswick, Canada to examine the impact of Surround (95% kaolin clay) on leaf gas exchange [net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 (Ci) and transpiration (E)]. In 2004, a greater rate of Pn and gs was achieved at the higher than at the lower frequency of Surround applications. This was particularly notable at leaf temperatures exceeding 35°C. In 2005, no significant (P ≤ 0.05) differences among leaf residue groupings [Trace (< 0.5 g m-2), Low (0.5 to 2 g m-2), and High (≥ 2 g m-2)] were found for the four leaf gas exchange parameters at leaf temperatures ranging from 25 to 40°C. It would appear that under New Brunswick commercial orchard conditions, the application of Surround favours or has no effect on leaf gas exchange. Key words: Surround, particle film, leaf physiology, photosynthesis, stomatal conductance, intercellular CO2, transpiration


2013 ◽  
Vol 844 ◽  
pp. 11-14
Author(s):  
Aidil Azhar ◽  
Jate Sathornkich ◽  
Ratchanee Rattanawong ◽  
Poonpipope Kasemsap

This experiment aimed to evaluate the leaf chlorophyll fluorescence and gas exchange response to drought conditions of young rubber plants with different scions. Buds from four genotypes of a progeny derived from crossed clones of RRIM600 x RRII105 from Nongkhai Rubber Research Center, T187, T186, T149 and T172, were grafted to RRIM 600 rootstocks. Eight-month old plants with two flushes were used in this study. Two levels of water treatment were used, drought condition (W1) and well-watered as control (W0). Leaf chlorophyll fluorescence, stomatal conductance (gs) and net photosynthesis rate (Pn) were investigated in three phases: before drought, during drought and after re-watering. Leaf gas exchange parameters were measured using Li-6400 (LiCor Inc.). Leaf chlorophyll fluorescence was measured using FluorPen FP 100 (Photon Systems Instruments). Before drought, genotype T186 had the greatest net photosynthesis rates followed by T172, T187 and T149; there was no difference in maximum quantum yield of photosystem II (Fv/Fm) and performance index on absorption basis (PIABS). Drought conditions caused reduction in stomatal conductance, net photosynthesis rates, and leaf chlorophyll fluorescence in all genotypes. In re-watering conditions, genotype T186 and T172 experienced quick recovery while the others showed partial recovery but the values of all parameters did not reach previous levels before treatment.


Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1531-1535 ◽  
Author(s):  
Ibrahim A. M. Saeed ◽  
Ann E. MacGuidwin ◽  
Douglas I. Rouse ◽  
Chris Malek

Field experiments were conducted for three consecutive years to study the effects of low populations of Verticillium dahliae and Pratylenchus penetrans on leaf gas exchange of Russet Burbank potato. Treatments were P. penetrans, V. dahliae, the combination of the nematode with the fungus, and a no-pathogen control. Gas exchange was measured nondestructively on young, fully expanded, asymptomatic leaves one to three times per week starting the ninth week after planting. Infection with either pathogen alone had little or no effect on leaf gas exchange parameters. However, co-infection by both pathogens resulted in reduced leaf light use efficiency (mole of CO2 fixed per mole of photon), lower leaf stomatal conductance, lower leaf water use efficiency (mole of CO2 fixed per mole of water used), and increased intercellular CO2 compared with the no-pathogen control. These effects, additive relative to the impact of each pathogen alone, were first observed 9 weeks after inoculation in the first 2 years of the study and 15 weeks after inoculation in the third year.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 853
Author(s):  
Zhijun Huang ◽  
Qingqing Liu ◽  
Bo An ◽  
Xiaojian Wu ◽  
Linjun Sun ◽  
...  

The improvement of the stand yield and economic benefits of Cunninghamialanceolata (Lamb.) Hook, one of the most important plantation trees in China, has always been a concern. An appropriate planting density plays an important role in increasing productivity. To determine the optimum planting density of C. lanceolata, we measured leaf morphology, gas exchange parameters, and photosynthetic pigments in replicate leaves on 4-year-old saplings grown in four canopy positions under a low (D1), medium (D2), and high (D3) planting density (approximately 900, 2505, and 6660 trees·ha−1, respectively). We then ranked trait variations using the coefficient of variation to explore the influence of planting density. Planting density significantly influenced the leaf morphology, gas exchange parameters, and the photosynthetic pigment contents of C. lanceolata. Medium planting density (D2) resulted in a larger leaf area and specific leaf areas, a higher net photosynthesis rate, and higher photosynthetic pigment contents. The responses of leaf gas exchange parameters had the most plastic traits that responded to planting density. An appropriate planting density and leaf position might improve C. lanceolata leaf morphology and physiological attributes, which in turn would facilitate growth.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501d-501
Author(s):  
Jonathan N. Egilla ◽  
Fred T. Davies

Six endomycorrhiza isolates from the Sonoran Desert of Mexico [Desert-14(18)1, 15(9)1, 15(15)1, Palo Fierro, Sonoran, and G. geosporum] were evaluated with a pure isolate of Glomus intraradices for their effect on the growth and gas exchange of Hibiscus rosa-sinensis L. cv. Leprechaun under low phosphorus fertility (11 mg P/L). Rooted cuttings of Hibiscus plants were inoculated with the seven mycorrhiza isolates and grown for 122 days. Gas exchange measurements were made on days 26, 88, and 122 after inoculation, and plants were harvested on day 123 for growth analysis. Plants inoculated with the seven isolates had 70% to 80% root colonization at harvest. Plants inoculated with G. intraradices had significantly higher leaf, shoot and root dry matter (DM), leaf DM/area (P ≤ 0.05) than those inoculated with any of the six isolates, and greater leaf area (LA) than Desert-15(9)1 and 15(15)1. Uninoculated plants had significantly lower leaf, shoot, root DM, leaf DM/area and LA (P ≤ 0.05) than the inoculated plants. There were no differences among the seven isolates in any of the gas exchange parameters measured [photosynthesis (A) stomatal conductance (gs), the ratio of intercellular to external CO2 (ci/ca), A to transpiration (E) ratio (A/E)]. The relationship between inoculated and uninoculated plants in these gas exchange parameters were variable on day 122 after inoculation.


2014 ◽  
Vol 42 (2) ◽  
pp. 386-391 ◽  
Author(s):  
Meral INCESU ◽  
Berken CIMEN ◽  
Turgut YESILOGLU ◽  
Bilge YILMAZ

Salinity continues to be a major factor in reduced crop productivity and profit in many arid and semiarid regions. Seedlings of Diospyros kaki Thunb. and D. virginiana L. are commonly used as rootstock in persimmon cultivation. In this study we have evaluated the effects of different salinity levels on photosynthetic capacity and plant development of D. kaki and D. virginiana. Salinity was provided by adding 50 mM, 75 mM and 100 mM NaCl to nutrient solution. In order to determine the effects of different salinity levels on plant growth, leaf number, plant height, shoot and root dry mass were recorded. Besides leaf Na, Cl, K and Ca concentrations were determined. Also leaf chlorophyll concentration, chlorophyll fluorescence (Fv’/Fm’) and leaf gas exchange parameters including leaf net photosynthetic rate (PN), stomatal conductance (gS), leaf transpiration rate (E), and CO2 substomatal concentration (Ci) were investigated. Significant decrease of leaf number, shoot length and plant dry mass by increasing salinity levels was observed in both rootstocks. D. virginiana was less affected in terms of plant growth under salinity stress. Leaf chlorophyll concentration reduction was higher in the leaves of D. kaki in comparison to D. virginiana in 100 mM NaCl treatment. By increasing salinity levels PN, gS and E markedly decreased in both rootstocks and D. kaki was more affected from salinity in terms of leaf gas exchange parameters. In addition there was no significant difference but slight decreases were recorded in leaf chlorophyll fluorescences of both rootstocks.


Sign in / Sign up

Export Citation Format

Share Document