The impact of kaolin clay sprays on leaf gas exchange of Ginger Gold apple trees in New Brunswick

2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 1377-1381 ◽  
Author(s):  
J. P. Privé ◽  
L. Russell ◽  
A. LeBlanc

A field trial was conducted over two growing seasons in a Ginger Gold apple orchard in Bouctouche, New Brunswick, Canada to examine the impact of Surround (95% kaolin clay) on leaf gas exchange [net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 (Ci) and transpiration (E)]. In 2004, a greater rate of Pn and gs was achieved at the higher than at the lower frequency of Surround applications. This was particularly notable at leaf temperatures exceeding 35°C. In 2005, no significant (P ≤ 0.05) differences among leaf residue groupings [Trace (< 0.5 g m-2), Low (0.5 to 2 g m-2), and High (≥ 2 g m-2)] were found for the four leaf gas exchange parameters at leaf temperatures ranging from 25 to 40°C. It would appear that under New Brunswick commercial orchard conditions, the application of Surround favours or has no effect on leaf gas exchange. Key words: Surround, particle film, leaf physiology, photosynthesis, stomatal conductance, intercellular CO2, transpiration

2013 ◽  
Vol 844 ◽  
pp. 11-14
Author(s):  
Aidil Azhar ◽  
Jate Sathornkich ◽  
Ratchanee Rattanawong ◽  
Poonpipope Kasemsap

This experiment aimed to evaluate the leaf chlorophyll fluorescence and gas exchange response to drought conditions of young rubber plants with different scions. Buds from four genotypes of a progeny derived from crossed clones of RRIM600 x RRII105 from Nongkhai Rubber Research Center, T187, T186, T149 and T172, were grafted to RRIM 600 rootstocks. Eight-month old plants with two flushes were used in this study. Two levels of water treatment were used, drought condition (W1) and well-watered as control (W0). Leaf chlorophyll fluorescence, stomatal conductance (gs) and net photosynthesis rate (Pn) were investigated in three phases: before drought, during drought and after re-watering. Leaf gas exchange parameters were measured using Li-6400 (LiCor Inc.). Leaf chlorophyll fluorescence was measured using FluorPen FP 100 (Photon Systems Instruments). Before drought, genotype T186 had the greatest net photosynthesis rates followed by T172, T187 and T149; there was no difference in maximum quantum yield of photosystem II (Fv/Fm) and performance index on absorption basis (PIABS). Drought conditions caused reduction in stomatal conductance, net photosynthesis rates, and leaf chlorophyll fluorescence in all genotypes. In re-watering conditions, genotype T186 and T172 experienced quick recovery while the others showed partial recovery but the values of all parameters did not reach previous levels before treatment.


1997 ◽  
Vol 87 (4) ◽  
pp. 435-439 ◽  
Author(s):  
Ibrahim A. M. Saeed ◽  
Ann E. MacGuidwin ◽  
Douglas I. Rouse

The effects of solitary and concurrent infection by Pratylenchus pene-trans and Verticillium dahliae on gas exchange of Russet Burbank potato (Solanum tuberosum) were studied in growth chamber experiments. Treatments were P. penetrans at low, medium, and high density; V. dahliae alone at one initial density; the combination of the nematode at these three densities and V. dahliae; and a noninfested control. Gas exchange parameters of leaf cohorts of different ages in the different treatments were repeatedly measured with a Li-Cor LI-6200 portable photosynthesis system. At 45 days after planting, joint infection significantly reduced net photosynthesis, stomatal conductance, and transpiration of 1- to 25-day-old leaf cohorts. Intercellular CO2 levels were significantly increased by co-infection, especially in older leaves. The synergistic effect of co-infection on gas exchange parameters was greater in the oldest cohort than in the youngest cohort. No consistent effects on leaf gas exchange parameters were observed in plants infected by the nematode or the fungus alone. The relationship between the assimilation rate and stomatal conductance remained linear regardless of solitary or concomitant infection, indicating that stomatal factors are primarily responsible for regulating photosynthesis. The significant reduction of gas exchange in leaves of co-infected plants without reduction in intercellular CO2 concentrations suggests that nonstomatal factors also play a role when both organisms are present.


2017 ◽  
Vol 68 (6) ◽  
pp. 574 ◽  
Author(s):  
R. A. Ploschuk ◽  
A. A. Grimoldi ◽  
E. L. Ploschuk ◽  
G. G. Striker

Waterlogging is a stress of increasing importance for pastures as a consequence of global climate change. We evaluated the impact of waterlogging on four forage grasses with alleged differential tolerance, emphasising not only responses during the stress but also their reported ability to recover from it. To do this, 42-day plants of Dactylis glomerata, Bromus catharticus, Festuca arundinacea and Phalaris aquatica were subjected to 15-day waterlogging, followed by a subsequent 15-day recovery period. Shoot and root growth (i.e. RGR) during both periods, in addition to net photosynthesis and stomatal conductance rates during waterlogging were assessed. Sensitivity exhibited by D. glomerata and B. catharticus during waterlogging was related to growth arrest of roots – but not of shoots – along with a progressive fall in stomatal conductance and net photosynthesis. The injury during waterlogging preceded a negligible growth of shoots and roots, only evident during recovery in both species. By contrast, P. aquatica exhibited unaltered root RGR and promoted shoot RGR with no impact on leaf gas exchange during waterlogging; whereas F. arundinacea showed intermediate tolerance as root RGR was reduced during waterlogging, with stomatal conductance, net photosynthesis and shoot RGR remaining unaffected. These latter two species fully regained shoot and root RGR during recovery. So, P. aquatica and F. arundinacea seem more suitable for prone-to-flood lowlands, whereas to be conclusive about waterlogging tolerance, it is necessary to examine plant recovery as shown in D. glomerata and B. catharticus.


Botany ◽  
2021 ◽  
Vol 99 (1) ◽  
pp. 23-32
Author(s):  
Gabriele Marques Leme ◽  
Flavio Nunes Ramos ◽  
Fabricio José Pereira ◽  
Marcelo Polo

We investigated morpho-physiological plasticity in the leaves of Ocotea odorifera trees growing under different environmental conditions in a fragmented forest. Microclimatic data were collected in a pasture matrix, forest edge, and forest interior in three Atlantic Forest fragments. Leaf gas exchange, as well as leaf anatomy in paradermal and transversal sections, were evaluated in individuals in these environments. Radiation intensity and temperature had higher effects in the pasture matrix compared with the forest interior and forest edge. However, internal portions of the canopy did not exhibit significant variation in radiation or temperature. External canopy leaves exhibited higher net photosynthesis in plants from the pasture matrix, but there was higher net photosynthesis for internal leaves from the shaded forest interior. Variation in net photosynthesis and other gas-exchange parameters were related to thinner shade leaves in forest interior individuals, and internal leaves with lower stomatal density. Although the pasture matrix, forest edge, and forest interior experienced differences in light and temperature, leaf position in the canopy produced microclimatic variations, which modified gas exchange and anatomy. Thus, O. odorifera shows the potential for reforestation programs because of its high leaf plasticity, which will enable it to overcome variations in light and temperature.


Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1531-1535 ◽  
Author(s):  
Ibrahim A. M. Saeed ◽  
Ann E. MacGuidwin ◽  
Douglas I. Rouse ◽  
Chris Malek

Field experiments were conducted for three consecutive years to study the effects of low populations of Verticillium dahliae and Pratylenchus penetrans on leaf gas exchange of Russet Burbank potato. Treatments were P. penetrans, V. dahliae, the combination of the nematode with the fungus, and a no-pathogen control. Gas exchange was measured nondestructively on young, fully expanded, asymptomatic leaves one to three times per week starting the ninth week after planting. Infection with either pathogen alone had little or no effect on leaf gas exchange parameters. However, co-infection by both pathogens resulted in reduced leaf light use efficiency (mole of CO2 fixed per mole of photon), lower leaf stomatal conductance, lower leaf water use efficiency (mole of CO2 fixed per mole of water used), and increased intercellular CO2 compared with the no-pathogen control. These effects, additive relative to the impact of each pathogen alone, were first observed 9 weeks after inoculation in the first 2 years of the study and 15 weeks after inoculation in the third year.


HortScience ◽  
2007 ◽  
Vol 42 (5) ◽  
pp. 1177-1182 ◽  
Author(s):  
Jean-Pierre Privé ◽  
Lindsay Russell ◽  
Anita LeBlanc

Kaolin particle films are used as a means of pest control in some commercial apple orchards in the Maritime provinces; however, no studies to date have evaluated the impact of these particle films on leaf gas exchange under the region's growing conditions. Also previously unexplored is the gas exchange response of blackberry leaves to kaolin particle films and the question of whether leaf gas exchange response varies according to the leaf surface of particle film application. A study consisting of an apple field trial and a blackberry greenhouse trial was conducted during the 2005 growing season in Bouctouche, New Brunswick, Canada, with the aims of 1) characterizing the leaf temperature and gas exchange responses [net photosynthesis, stomatal conductance (g s), intercellular CO2, and transpiration] of ‘Ginger Gold’ apple [Malus ×sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] leaves to a kaolin particle film (95% kaolin clay) applied at various leaf residue densities under the province's growing conditions, 2) characterizing the leaf temperature and gas exchange responses of ‘Triple Crown’ blackberry (Rubus L. subgenus Rubus Watson) leaves to treatment of adaxial or abaxial surfaces with the kaolin particle film at various leaf residue densities, and 3) determining whether the gas exchange response of apple and blackberry leaves to the kaolin particle film varies according to leaf temperature. Leaf gas exchange measurements were taken under conditions of ambient CO2, saturated light, moderate (apple) or high (blackberry) relative humidity levels and leaf temperatures ranging from 26 to 39 °C (apple) and 15 to 41 °C (blackberry). When the particle film was applied to both the adaxial and abaxial surfaces of apple leaves at kaolin residue densities of 0.5 to 3.7 g·m−2, leaf temperature was reduced by up to 1.1 °C (P = 0.005) and g s was increased (P = 0.029) relative to leaves with trace (<0.5 g·m−2) levels of kaolin deposits. No other effects of kaolin leaf residue density on apple leaf gas exchange were found, nor were any interactions of leaf temperature × residue level (P > 0.05). When applied to a fixed area on the adaxial or abaxial surfaces of blackberry leaves at kaolin residue densities of 0.5 to 10.8 g·m−2, the particle film did not alter leaf temperature or gas exchange (P > 0.05). No interactions of leaf temperature × residue level or leaf temperature × leaf surface × residue level were found to affect blackberry leaf gas exchange (P > 0.05).


2017 ◽  
Vol 14 (15) ◽  
pp. 3649-3667 ◽  
Author(s):  
Ines Bamberger ◽  
Nadine K. Ruehr ◽  
Michael Schmitt ◽  
Andreas Gast ◽  
Georg Wohlfahrt ◽  
...  

Abstract. Extreme weather conditions like heatwaves and drought can substantially affect tree physiology and the emissions of isoprene. To date, however, there is only limited understanding of isoprene emission patterns during prolonged heat stress and next to no data on emission patterns during coupled heat–drought stress or during post-stress recovery. We studied gas exchange and isoprene emissions of black locust trees under episodic heat stress and in combination with drought. Heatwaves were simulated in a controlled greenhouse facility by exposing trees to outside temperatures +10 °C, and trees in the heat–drought treatment were supplied with half of the irrigation water given to heat and control trees. Leaf gas exchange of isoprene, CO2 and H2O was quantified using self-constructed, automatically operating chambers, which were permanently installed on leaves (n = 3 per treatment). Heat and combined heat–drought stress resulted in a sharp decline of net photosynthesis (Anet) and stomatal conductance. Simultaneously, isoprene emissions increased 6- to 8-fold in the heat and heat–drought treatment, which resulted in a carbon loss that was equivalent to 12 and 20 % of assimilated carbon at the time of measurement. Once temperature stress was released at the end of two 15-day-long heatwaves, stomatal conductance remained reduced, while isoprene emissions and Anet recovered quickly to values of the control trees. Further, we found that isoprene emissions covaried with Anet during nonstress conditions, while during the heatwaves, isoprene emissions were not related to Anet but to light and temperature. Under standard air temperature and light conditions (here 30 °C and photosynthetically active radiation of 500 µmol m−2 s−1), isoprene emissions of the heat trees were by 45 % and the heat–drought trees were by 27 % lower than in control trees. Moreover, temperature response curves showed that not only the isoprene emission factor changed during both heat and heat–drought stress, but also the shape of the response. Because introducing a simple treatment-specific correction factor could not reproduce stress-induced isoprene emissions, different parameterizations of light and temperature functions are needed to describe tree isoprene emissions under heat and combined heat–drought stress. In order to increase the accuracy of predictions of isoprene emissions in response to climate extremes, such individual stress parameterizations should be introduced to current BVOC models.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 853
Author(s):  
Zhijun Huang ◽  
Qingqing Liu ◽  
Bo An ◽  
Xiaojian Wu ◽  
Linjun Sun ◽  
...  

The improvement of the stand yield and economic benefits of Cunninghamialanceolata (Lamb.) Hook, one of the most important plantation trees in China, has always been a concern. An appropriate planting density plays an important role in increasing productivity. To determine the optimum planting density of C. lanceolata, we measured leaf morphology, gas exchange parameters, and photosynthetic pigments in replicate leaves on 4-year-old saplings grown in four canopy positions under a low (D1), medium (D2), and high (D3) planting density (approximately 900, 2505, and 6660 trees·ha−1, respectively). We then ranked trait variations using the coefficient of variation to explore the influence of planting density. Planting density significantly influenced the leaf morphology, gas exchange parameters, and the photosynthetic pigment contents of C. lanceolata. Medium planting density (D2) resulted in a larger leaf area and specific leaf areas, a higher net photosynthesis rate, and higher photosynthetic pigment contents. The responses of leaf gas exchange parameters had the most plastic traits that responded to planting density. An appropriate planting density and leaf position might improve C. lanceolata leaf morphology and physiological attributes, which in turn would facilitate growth.


2017 ◽  
Author(s):  
Ines Bamberger ◽  
Nadine K. Ruehr ◽  
Michael Schmitt ◽  
Andreas Gast ◽  
Georg Wohlfahrt ◽  
...  

Abstract. Extreme weather conditions, like heat waves and drought, can substantially affect tree physiology and the emissions of biogenic volatile organic compounds (BVOC), including isoprene. To date, however, there is only limited understanding of BVOC emission patterns during prolonged heat and coupled heat–drought stress as well as post-stress recovery. To assess the impacts of heat and heat–drought stress on BVOC emissions, we studied gas exchange and isoprene emissions of black locust trees under controlled environmental conditions. Leaf gas exchange of isoprene, CO2 and H2O was quantified using branch chambers connected to a protontransfer-reaction mass spectrometer and an infrared gas analyzer. Heat and heat–drought stress resulted in a sharp decline of photosynthesis and stomatal conductance. Simultaneously, isoprene emissions increased six- to eight-fold in the heat and heat–drought treatment and resulted in a carbon loss that was equivalent to 12 % and 20 % of assimilated carbon at the time of measurement. Once temperature stress was released at the end of two 15 days long heat waves, stomatal conductance remained reduced, while isoprene emissions and photosynthesis recovered quickly to values of the control trees. Further, we found isoprene emissions to co-vary with net photosynthesis during non-stressful conditions, while during the heat waves, isoprene emissions could be solely described by non-linear functions of light and temperature. However, when isoprene emissions betweentreatments were compared under the same temperature and light conditions (e.g., T = 30° C, PAR = 500 µmol m−2 s−1), heat and heat–drought stressed trees would emit less isoprene than control trees. Ourfindings suggest that different parameterizations of light and temperature functions are needed in order to predict tree isoprene emissions under heat and combined heat–drought stress.


1986 ◽  
Vol 16 (2) ◽  
pp. 177-184 ◽  
Author(s):  
J. S. Pereira ◽  
J. D. Tenhunen ◽  
O. L. Lange ◽  
W. Beyschlag ◽  
A. Meyer ◽  
...  

Gas exchange of adult leaves of Eucalyptusglobulus Labill. trees growing in Portugal was monitored during weekly periods between September 1982 and August 1983. Photosynthetic carbon assimilation rates and leaf water use efficiency were highest (maximum instantaneous values, ca. 12 μmol CO2 m−2 s−1 and ca. 7 mmol CO2 mol H2O−1, respectively) in the spring, somewhat reduced in the winter, and strongly depressed by the middle of the summer, when severe drought conditions prevailed. Diurnal patterns of variation in stomatal conductance and net photosynthesis rates showed a marked seasonal variation. With the transition from winter to spring and summer, as the environmental conditions became warmer and drier, there was an increasing tendency for a midday depression in gas exchange rates as well as a decreasing capacity in the afternoon for recovery to the same net photosynthesis rates measured in the morning. Midday depression in gas exchange and stomatal conductance occurred in leaves positioned both vertically and horizontally inside the measurement cuvettes. Leaf dark respiratory rates also changed with the season; the temperature necessary to evoke similar rates increased with the transition from winter to summer.


Sign in / Sign up

Export Citation Format

Share Document