scholarly journals Effect of Relative Humidity and Interrupted Wetness Periods on Brown Spot Severity of Pear Caused by Stemphylium vesicarium

2002 ◽  
Vol 92 (1) ◽  
pp. 99-104 ◽  
Author(s):  
I. Llorente ◽  
E. Montesinos

Field observations in four pear orchards during 5 years from April to October indicated that days with uninterrupted wetness of variable length represented 83.9% of the total days studied. However, days with surface wetness interruptions and with high relative humidity (RH) (≥90%) without wetness occurred with a frequency of 7.1 and 6.2%, respectively. Accordingly, the effect of interruption of 24-h wetness periods by dry periods of high or low RH on infections caused by Stemphylium vesicarium on pear was determined. Pear plants inoculated with conidia of S. vesicarium were exposed to a 12-h wet period followed by a dry period of variable length (0, 3, 6, 12, 18, or 24 h) and a second wet period of 12 h. The dry period consisted either of low (60%) or high (96%) RH. The infection process was irreversibly stopped under low RH during dry periods between wetness, but continued at high RH. The effect of high RH on disease severity in the absence of wetness was also determined. Pear plants inoculated with S. vesicarium were exposed to periods of variable length (3 to 24 h) either at high RH (96%) in the presence of wetness or at high RH (96%) without wetness. No infections were observed on plants incubated under high RH without wetness, indicating that conidia of S. vesicarium require the presence of a water film in the plant surface to develop infections on pear.

Plant Disease ◽  
2006 ◽  
Vol 90 (12) ◽  
pp. 1511-1516 ◽  
Author(s):  
Isidre Llorente ◽  
Albert Vilardell ◽  
Emilio Montesinos

The capacity for germination and pathogenicity to pear leaves of ascospores of Pleospora allii, the teleomorph of Stemphylium vesicarium, causal agent of brown spot of pear, were studied in vitro. Most ascospores germinated within 1 h at temperatures between 15 and 20°C, and the optimum temperature for germination was 18.9°C. Infections developed on wounded and non-wounded detached pear leaves, but were more frequent on wounded leaves. The minimum infective dose was one ascospore per wound. Biological, chemical, and mechanical methods for decreasing overwintering inoculum of P. allii were evaluated. Ascospores were discharged from March to May, depending on the orchard and year. Leaf shredding or removal were the most effective methods of reducing overwintering inoculum. Biological control methods based on application of Thichodermasp. formulations were partially effective. Chemical methods based on copper and urea treatments were ineffective.


2021 ◽  
Vol 23 (1) ◽  
pp. 54-59
Author(s):  
SANTOSH KUMAR ◽  
MD. NADEEM AKHTAR ◽  
SANTOSH KUMAR ◽  
MAHESH KUMAR ◽  
TRIBHUWAN KUMAR

Weather parameters play a pivotal role in the infection process and spread of pathogen. It also influences the expression of susceptibility/resistance of the host plant during post-infection phases. Therefore, an experiment was conducted for two consecutive cropping seasons (2018 &2019) to study the influence of weather parameters such as temperature, humidity, rainfall and wind direction on the emergence of alternaria leaf blight of makhana in Koshi region of Bihar. Maximum per cent disease severity of alternarialeaf blightwas observed during the peak monsoon months (June to August). Highest disease severity of leaf blight (14.80% & 15.7%) was observed in the mid June during crop season, 2018 and 2019. High temperature (36.9oC & 38.1oC), and relative humidity (94% & 96.4%) of both the year 2018 and 2019 were found correlated with higher severity to alternaria leaf blight. Similarly average HTR values (3.1) were also found correlated with the average high temperature and relative humidity of both years (2018 and 2019) in terms of severity of leaf blight disease. Maximum temperatures, relative humidity and rainfall exhibited strong positive linear relationship and influenced the occurrence of alternaria leaf blight disease significantly. We also developed a geo-phytopathological model for the prediction of alternaria leaf blight disease of makhana on the basis of congenial mean temperature and relative humidity.


EPPO Bulletin ◽  
2000 ◽  
Vol 30 (1) ◽  
pp. 143-148 ◽  
Author(s):  
I. Llorente ◽  
C. Moragrega ◽  
P. Vilardell ◽  
E. Montesinos

2016 ◽  
Vol 120 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Mireia Puig ◽  
Concepció Moragrega ◽  
Lídia Ruz ◽  
Claudia E. Calderón ◽  
Francisco M. Cazorla ◽  
...  

Plant Disease ◽  
2017 ◽  
Vol 101 (4) ◽  
pp. 562-567 ◽  
Author(s):  
Shiling Sun ◽  
Sen Lian ◽  
Shulian Feng ◽  
Xiangli Dong ◽  
Caixian Wang ◽  
...  

Cucumber downy mildew, caused by Pseudoperonospora cubensis, is a worldwide disease that causes severe damage to cucumber production. The effects of temperature and moisture on sporulation and infection by P. cubensis were investigated by inoculating cucumber (‘85F12’) cotyledons with sporangia and examining the sporangia produced on the inoculated cotyledons under artificially controlled environments. The result showed that the temperature required for sporangium infection by P. cubensis and sporulation of the downy mildew lesions occurred at 5 to 30°C. The optimal temperature estimated by the fitted model was 18.8°C for sporangium infection and 16.2°C for downy mildew lesion sporulation. The pathogen formed plenty of sporangia when disease cotyledons were wetted or in the environment with relative humidity = 100%. The downy mildew lesions produced only a few sporangia when placed in the environment with relative humidity = 90%. The inoculated cotyledons, which incubated for 5 days at about 20°C in a dry greenhouse, began to form sporangia 4 h after being wetted when incubated in darkness. The quantity of sporangia produced on the downy mildew lesions increased with extension of incubating period (within 12 h), and the relationship between produced sporangia and the incubation period at 15, 20, and 25°C can be described by three exponential models. The observed minimum wetness durations (MWD) required for sporangia to complete the infection process and cause downy mildew were 12, 4, 2.5, 1, 1, and 6 h for 5, 10, 15, 20, 25, and 30°C, respectively. The effect of temperature and wetness duration on infection by sporangia of P. cubensis can be described by the modified Weibull model. The shortest MWD was 0.45 h, about 27 min, estimated by model. The experimental data and models will be helpful in the development of forecasting models and effective control systems for cucumber downy mildew.


2005 ◽  
Vol 2 (6) ◽  
pp. 1739-1793 ◽  
Author(s):  
N. Altimir ◽  
P. Kolari ◽  
J.-P. Tuovinen ◽  
T. Vesala ◽  
J. Bäck ◽  
...  

Abstract. This paper addresses the potential role of surface wetness in ozone deposition to plant foliage. We studied Scots pine foliage in field conditions at the SMEARII field measurement station in Finland. We used a combination of data from flux measurement at the shoot (enclosure) and canopy scale (eddy covariance), information from foliage surface wetness sensors, and a broad array of ancillary measurements such as radiation, precipitation, temperature, and relative humidity. Environmental conditions were defined as moist during rain or high relative humidity, and the subsequent 12 h from such events, circumstances that were frequent at this boreal site. From the measured fluxes we estimated the ozone conductance as the expression of the strength of the ozone removal surface sink or total deposition. Further, the stomatal contribution was estimated and the remaining deposition was analysed as non-stomatal sink. The combined time series of measurements showed that both shoot and canopy-scale ozone total deposition were enhanced when moist conditions occurred. On average, the estimated stomatal deposition accounted for half of the measured removal at the shoot scale and one third at the canopy scale. However, during dry conditions the estimated stomatal uptake predicted the behaviour of the measured deposition, but during moist conditions there was disagreement. The estimated non-stomatal sink was analysed against several environmental factors and the clearest correspondence was found with ambient relative humidity. The relationship disappeared under 70% relative humidity, a threshold that coincides with the value at which surface moisture gathers at the foliage surface according to the leaf surface wetness measurements. This suggests the non-stomatal ozone sink on the foliage to be modulated by the surface films. We attempted to extract such potential modulation with the estimated film formation via the theoretical expression or adsorption isotherm. Whereas this procedure could predict the behaviour of the non-stomatal sink, it implied a chemical sink that was not accountable as simple ozone decomposition. We discuss the existence of other mechanisms whose relevance needs to be clarified, in particular: a significant stomatal aperture neglected in the estimations, and a potentially large chemical sink offered by reactive biogenic organic volatile compounds.


HortScience ◽  
1999 ◽  
Vol 34 (2) ◽  
pp. 322-325 ◽  
Author(s):  
Thomas M. Gradziel ◽  
Steven A. Weinbaum

The regulation of anther dehiscence by relative humidity (RH) was assessed for detached anthers and detached whole flowers from a limited selection of apricot (Prunus armeniaca L.), peach [P. persica (L.) Batsch], and almond [P. dulcis (Mill.) D.A. Webb, syn. P. amygdalus Batsch; P. communis (L.) Arcangeli, non Huds.] genotypes, as well as an almond X peach F2 progeny. Dehiscence was evaluated at 33, 64, 87, 93 and 97% RH for detached anthers, and at 33, 64 and 97% RH for whole detached flowers. Anther dehiscence was suppressed with increasing RH for all genotypes. Apricot anthers showed the greatest dehiscence at low RH and measurable dehiscence at high RH even when detached. Anther dehiscence in almond appeared more suppressed than in apricot at all RH levels tested, being completely suppressed by high RH in detached anthers. Peach genotypes exhibited the full range of variability between apricot and almond patterns. Evidence for transgressive segregation of RH-controlled anther dehiscence was observed in the occurrence of cleistogamy in an almond × peach F2 progeny. Rates of anther dehiscence were approximately linear with change in RH in detached anthers but exhibited a more buffered, step-wise response when detached whole flowers were tested. Results are consistent with field observations, and highlight the low but measurable risk of cleistogamy in these species, as well as opportunities to modify the breeding systems and crossing environments to facilitate controlled hybridization, and to reduce pollination vulnerability to adverse environments.


Sign in / Sign up

Export Citation Format

Share Document