scholarly journals The Population Structure of Phytophthora infestans from the Toluca Valley of Central Mexico Suggests Genetic Differentiation Between Populations from Cultivated Potato and Wild Solanum spp.

2003 ◽  
Vol 93 (4) ◽  
pp. 382-390 ◽  
Author(s):  
Wilbert G. Flier ◽  
Niklaus J. Grünwald ◽  
Laurens P. N. M. Kroon ◽  
Anne K. Sturbaum ◽  
Trudy B. M. van den Bosch ◽  
...  

The population structure of Phytophthora infestans in the Toluca Valley of central Mexico was assessed using 170 isolates collected from cultivated potatoes and the native wild Solanum spp., S. demissum and S. xendinense. All isolates were analyzed for mitochondrial DNA (mtDNA) haplotype and amplified fragment length polymorphism (AFLP) multi-locus fingerprint genotype. Isolate samples were monomorphic for mtDNA haplotype because all isolates tested were of the Ia haplotype. A total of 158 multilocus AFLP genotypes were identified among the 170 P. infestans isolates included in this study. P. infestans populations sampled in the Toluca Valley in 1997 were highly variable and almost every single isolate represented a unique genotype based on the analysis of 165 AFLP marker loci. Populations of P. infestans collected from the commercial potato-growing region in the valley, the subsistence potato production area along the slopes of the Nevado de Toluca, and the native Solanum spp. on the forested slopes of the volcano showed a high degree of genetic diversity. The number of polymorphic loci varied from 20.0 to 62.4% for isolates collected from the field station and wild Solanum spp. On average, 81.8% (135) of the AFLP loci were polymorphic. Hetero-zygosity varied between 7.7 and 19.4%. Significant differentiation was found at the population level between strains originating from cultivated potatoes and wild Solanum spp. (P = 0.001 to 0.022). Private alleles were observed in individual isolates collected from all three populations, with numbers of unique dominant alleles varying from 9 to 16 for isolates collected from commercial potato crops and native Solanum spp., respectively. Four AFLP markers were exclusively found present in isolates collected from S. demissum. Indirect estimation of gene flow between populations indicated restricted gene flow between both P. infestans populations from cultivated potatoes and wild Solanum hosts. There was no evidence found for the presence of substructuring at the subpopulation (field) level. We hypothesize that population differentiation and genetic isolation of P. infestans in the Toluca Valley is driven by host-specific factors (i.e., R-genes) widely distributed in wild Solanum spp. and random genetic drift.

2001 ◽  
Vol 91 (9) ◽  
pp. 882-890 ◽  
Author(s):  
Niklaus J. Grünwald ◽  
Wilbert G. Flier ◽  
Anne K. Sturbaum ◽  
Edith Garay-Serrano ◽  
Trudy B. M. van den Bosch ◽  
...  

We tested the hypothesis that the population of Phytophthora infestans in the Toluca valley region is genetically differentiated according to habitat. Isolates were sampled in three habitats from (i) wild Solanum spp. (WILD), (ii) land-race varieties in low-input production systems (RURAL), and (iii) modern cultivars in high-input agriculture (VALLEY). Isolates were sampled in 1988-89 (n= 179) and in 1997-98 (n= 389). In both sampling periods, the greatest genetic diversity was observed in RURAL and VALLEY habitats. Based on the Glucose-6-phosphate isomerase and Peptidase allozymes, the subpopulations from the three habitats were significantly differentiated in both sampling periods. In contrast to allozyme data for 1997-98, no differences were found among the three subpopulations for sensitivity to metalaxyl. Two groups of isolates identical for allozyme and mating type were further investigated by restriction fragment length polymorphism fingerprinting; 65% of one group and 85% of another group were demonstrated to be unique. The genetic diversity data and the chronology of disease occurrence during the season are consistent with the hypothesis that populations of P. infestans on wild Solanum populations are derived from populations on cultivated potatoes in the central highlands of Mexico near Toluca.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1112-1112 ◽  
Author(s):  
C. A. López Orona ◽  
A. R. Martínez ◽  
T. T. Arteaga ◽  
H. G. García ◽  
D. Palmero ◽  
...  

Phytophthora infestans causes severe symptoms of wilt disease on potato crops (Solanum tuberosum) in the Toluca Valley (Mexico) despite the use of fungicides. P. infestans oospores produced by sexual reproduction can survive in the soil for many years, resisting harsh environments. In many agroecosystems, oospores germinate in the beginning of a season, which represents the initial inoculum for epidemics. The sexual cycle of the pathogen allows the generation of recombinant genotypes that can be more pathogenic or even resistant to chemicals. This paper presents a study of 20 isolates of P. infestans collected from potato crops in the Toluca Valley within the municipality of Zinacantepec (Mexico State). Isolates were obtained from potato foliar infected tissues. The pathogen was confirmed as P. infestans on the basis of morphological characters (1). Sporangia were caducous, ovoid, limoniform, semipapillate, and were 28.4 ± 1.3 × 17.6 ± 1.2 μm (height × width). Mycelium was coenocytic with hyphal diameter of 5 to 8 μm. Five isolates were collected in 2011, and 15 in 2012. Isolates were transferred by hyphal tip to culture medium plates with V8 juice agar and incubated at 19°C. All the isolates were mated to determine the mating type with the reference isolates J104 (A1) and J204 (A2), which were provided by the Michoacana University of San Nicolás de Hidalgo (Mx). Isolates that produced oospores with both A1 and A2 testers (J104 and J204) and in a single culture were designated homothallic. Results show that two out of the five isolates collected in 2011 were homothallic and the other three were type A1. Regarding the 15 isolates collected in 2012, six were typed as A1, five as A2, and four were homothallic. The heterothallic isolates only produce oospores when mated with the opposite mating type. The homothallic isolates possessed the ability to act as A1 and A2 during heterothallic mating and were found capable of producing sexual structures (oogonia and amphigynous antheridia) in a single culture, a phenomenon not observed in isolates that are strictly A1 or A2. Oospores formed were aplerotic and measured 32.2 ± 3.3 μm in diameter. Single-sporangium progeny were produced from the six homothallic isolates to be analyzed to confirm the occurrence of the self-fertility. Assessment of 48 single-sporangium progeny from the homothallic isolates resulted in 22 homothallic, 12 A1, 10 A2, and four sterile. These results differ from those found by Grünwald et al. (3), who conducted a study with isolates collected from the Toluca Valley region in 1997 and 1998, finding a 1:1 frequency between compatibility types A1 and A2. Fernandez et al. (2) studied a broad population of 27 isolates from potato crops in the state of Michoacán (Mx), and found two homothallic isolates among heterothallic isolates; the ratio was 1:1. Also, homothallic isolates have been found in Spain and China (4). To our knowledge, this is the first report of the occurrence of homothallic P. infestans isolates in commercial potato crops (S. tuberosum) in the Toluca Valley, Mexico. References: (1) D. C. Erwin and O. K. Ribeiro, Page 346 in: Phytophthora Diseases Worldwide. The American Phytopathological Society. St. Paul, MN, 1996. (2) S. P. Fernández et al. Rev. Mexicana Fitopatol. 23:191, 2005. (3) N. J. Grünwald et al. Phytopathology 91:883, 2001. (4) M. Han et al. J. Eukaryotic Microbiol. 60:79, 2013.


2017 ◽  
Vol 29 (2) ◽  
pp. 281
Author(s):  
Khalid Naveed ◽  
Nasir A. Rajputt ◽  
Sajid A. Khan ◽  
Arbab Ahmad

Phytophthora infestans is a destructive pathogen that causes late blight of potato worldwide. Several sexually and asexually reproducing lineages of the pathogen have been identified and new lineages are more virulent as compared to their parental lineages. A new highly aggressive clonal lineage EU13_A2 has spread into potato fields of Europe, Africa and Asia in place of the older lineages. In North America, 24 clonal lineages US1to US24 have been identified. Despite of sexual reproduction, the overall population of P. infestans in potato and tomato fields is dominated by asexual lineages. Breeding has been done to transfer 'R' genes into commercial potato cultivars through classical breeding and by pyramiding of genes. Defender is the only potato cultivar that has foliar and tuber resistance to late blight. Genetically modified potato with RB gene from Solanum bulbocastanum has been developed but it lacks tuber resistance to disease. This review discusses population structure of P. infestans worldwide and breeding efforts to produce late blight resistant potato.


2001 ◽  
Vol 105 (8) ◽  
pp. 998-1006 ◽  
Author(s):  
Wilbert G. Flier ◽  
Niklaus J. Grünwald ◽  
William E. Fry ◽  
Lodewijk J. Turkensteen

Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 73-73 ◽  
Author(s):  
S. P. Fernández-Pavía ◽  
N. J. Grünwald ◽  
W. E. Fry

Oospore formation by Phytophthora infestans in nature has been detected on potato leaflets in central Mexico (1), but there are no reports of oospore formation on tubers. A severe late blight epidemic occurred in Calimaya, Mexico, in fields where potato cv. Alpha was planted during the summer of 2000. Yield was reduced despite numerous applications of fungicide. Four hundred potato tubers left in the field were collected from the upper 10 cm of soil and examined for late blight symptoms. Tubers with soft and dry rot symptoms were observed, but symptoms of pink rot (Phytophthora erythroseptica) were not found. Four percent of the tubers showed late blight symptoms. Sections of 10 tubers with late blight symptoms were air-dried for 2 weeks in the laboratory and homogenized with a mortar and pestle. Glycerol was added to the homogenized tissue and observed microscopically. Aplerotic oospores (10 to 15 oospores per tuber) with amphyginous antheridia typical of P. infestans were observed. P. mirabilis morphologically similar to P. infestans is present in the area but it does not infect potato tubers. The number of oospores observed in our tuber sample was much lower than the number reported on leaflets (>1,000 oospores per leaflet) in the Toluca Valley. Low numbers of oospores have been reported on tubers artificially inoculated with P. infestans under field conditions (2). Infected tubers left in the field may act as a source of primary inoculum. To our knowledge, this is the first report of oospores of P. infestans found on tubers in Mexico under natural field conditions. References: (1) M. E. Gallegly and J. Galindo. Phytopathology 48:274, 1958. (2) A. Levin et al. Phytopathology 91:579, 2001.


2015 ◽  
Vol 105 (9) ◽  
pp. 1198-1205 ◽  
Author(s):  
A. Khiutti ◽  
D. M. Spooner ◽  
S. H. Jansky ◽  
D. A. Halterman

Potato late blight, caused by the oomycete phytopathogen Phytophthora infestans, is a devastating disease found in potato-growing regions worldwide. Long-term management strategies to control late blight include the incorporation of host resistance to predominant strains. However, due to rapid genetic changes within pathogen populations, rapid and recurring identification and integration of novel host resistance traits is necessary. Wild relatives of potato offer a rich source of desirable traits, including late blight resistance, but screening methods can be time intensive. We tested the ability of taxonomy, ploidy, crossing group, breeding system, and geography to predict the presence of foliar and tuber late blight resistance in wild Solanum spp. Significant variation for resistance to both tuber and foliar late blight was found within and among species but there was no discernable predictive power based on taxonomic series, clade, ploidy, breeding system, elevation, or geographic location. We observed a moderate but significant correlation between tuber and foliar resistance within species. Although previously uncharacterized sources of both foliar and tuber resistance were identified, our study does not support an assumption that taxonomic or geographic data can be used to predict sources of late blight resistance in wild Solanum spp.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 909-909 ◽  
Author(s):  
E. Garay-Serrano ◽  
S. P. Fernández-Pavía ◽  
G. Rodríguez-Alvarado ◽  
W. G. Flier ◽  
H. Lozoya-Saldaña ◽  
...  

Central Mexico is considered a center of genetic diversity for Phytophthora infestans on the basis of a range of genotypic and phenotypic characteristics (3). Surprisingly, while mitochondrial DNA (mtDNA) haplotypes I-a, II-a, and II-b have been reported from central Mexico, haplotype I-b has not been found in central Mexico (1). Therefore, a more extensive search for haplotypes was conducted in areas where sexual reproduction occurs. During the summer of 2003, leaflets of cvs. Rosita and Tollocan with a single lesion of late blight were collected in the area of Villarreal, located in Terrenate County in Tlaxcala, Mexico (170 km northeast of Mexico City). Fourteen P. infestans isolates were characterized for mtDNA haplotype, isozyme genotype (glucose 6- phosphate isomerase [Gpi] and peptidase [Pep]), and mating type. Isolation, mating type, and isozyme genotype were characterized following reported protocols (1,4). MtDNA haplotype was determined by amplifying and digesting the P2 and P4 regions and comparing amplicons to those of reference strains of known haplotype (1,2). Twelve isolates were mtDNA haplotype I-a and two were I-b. While the mtDNA I-b has been associated with the US-1 lineage (mating type: A1, Gpi: 86/100, Pep: 92/100), the genotypes for the Mexican isolates were A2, 86/100 Gpi, 100/100 Pep from cv. Rosita and A2, 86/100 Gpi, 92/100 Pep from cv. Tollocan. To our knowledge, this is the first report of the I-b mtDNA haplotype of P. infestans from central Mexico and it is now clear that all four haplotypes exist in Mexico. This finding therefore, stresses the importance of including a representative regional sampling of Mexican and Andean isolates in studies inferring the origin of this species. References: (1) W. G. Flier et al. Phytopathology 93:382, 2003. (2) G. W. Griffith and D. S. Shaw. Appl. Environ. Microbiol. 64:4007, 1998. (3) N. J. Grünwald and W. G. Flier. Ann. Rev. Phytopathol. 43:171, 2005. (4) N. J. Grünwald et al. Phytopathology 91:882, 2001.


2011 ◽  
Vol 4 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Evgenyi N. Panov ◽  
Larissa Yu. Zykova

Field studies were conducted in Central Negev within the breeding range of Laudakia stellio brachydactyla and in NE Israel (Qyriat Shemona) in the range of an unnamed form (tentatively “Near-East Rock Agama”), during March – May 1996. Additional data have been collected in Jerusalem at a distance of ca. 110 km from the first and about 170 km from the second study sites. A total of 63 individuals were caught and examined. The animals were marked and their subsequent movements were followed. Social and signal behavior of both forms were described and compared. Lizards from Negev and Qyriat Shemona differ from each other sharply in external morphology, habitat preference, population structure, and behavior. The differences obviously exceed the subspecies level. At the same time, the lizards from Jerusalem tend to be intermediate morphologically between those from both above-named localities, which permits admitting the existence of a limited gene flow between lizard populations of Negev and northern Israel. The lizards from NE Israel apparently do not belong to the nominate subspecies of L. stellio and should be regarded as one more subspecies within the species.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Maysa Tiemi Motoki ◽  
Dina Madera Fonseca ◽  
Elliott Frederic Miot ◽  
Bruna Demari-Silva ◽  
Phoutmany Thammavong ◽  
...  

Abstract Background The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse) is an important worldwide invasive species and can be a locally important vector of chikungunya, dengue and, potentially, Zika. This species is native to Southeast Asia where populations thrive in both temperate and tropical climates. A better understanding of the population structure of Ae. albopictus in Lao PDR is very important in order to support the implementation of strategies for diseases prevention and vector control. In the present study, we investigated the genetic variability of Ae. albopictus across a north-south transect in Lao PDR. Methods We used variability in a 1337-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), to assess the population structure of Ae. albopictus in Lao PDR. For context, we also examined variability at the same genetic locus in samples of Ae. albopictus from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA. Results We observed very high levels of genetic polymorphism with 46 novel haplotypes in Ae. albopictus from 9 localities in Lao PDR and Thailand populations. Significant differences were observed between the Luangnamtha population and other locations in Lao PDR. However, we found no evidence of isolation by distance. There was overall little genetic structure indicating ongoing and frequent gene flow among populations or a recent population expansion. Indeed, the neutrality test supported population expansion in Laotian Ae. albopictus and mismatch distribution analyses showed a lack of low frequency alleles, a pattern often seen in bottlenecked populations. When samples from Lao PDR were analyzed together with samples from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA, phylogenetic network and Bayesian cluster analysis showed that most populations from tropical/subtropical regions are more genetically related to each other, than populations from temperate regions. Similarly, most populations from temperate regions are more genetically related to each other, than those from tropical/subtropical regions. Conclusions Aedes albopictus in Lao PDR are genetically related to populations from tropical/subtropical regions (i.e. Thailand, Singapore, and California and Texas in the USA). The extensive gene flow among locations in Lao PDR indicates that local control is undermined by repeated introductions from untreated sites.


Sign in / Sign up

Export Citation Format

Share Document