scholarly journals Interactions Between Trichoderma harzianum Strain T22 and Maize Inbred Line Mo17 and Effects of These Interactions on Diseases Caused by Pythium ultimum and Colletotrichum graminicola

2004 ◽  
Vol 94 (2) ◽  
pp. 147-153 ◽  
Author(s):  
Gary E. Harman ◽  
Rixana Petzoldt ◽  
Alfio Comis ◽  
Jie Chen

Seed treatment with Trichoderma harzianum strain T22, which results in colonization of plant roots but little or no colonization of shoots or leaves, had substantial effects on growth of and disease expression in maize inbred line Mo17. Shoots and roots of 10-day-old seedlings grown in a sandy loam field soil were larger (roots were nearly twice as long) in the presence of T22 than in its absence. Both main and secondary roots were increased in size and area and the root hair area was greater with T22. However, root hair area per unit of root length was greater in control plants. Increased growth probably was due to direct stimulation of plant growth in addition to effects from biological control of deleterious microflora. Seedlings of Mo17 grown in autoclaved or mefenoxamtreated sandy loam field soil were larger than those produced in untreated soil. However, seedlings grown in the presence of T22, either in treated or untreated soil, were larger than those produced in its absence. Infestation of soil with Pythium ultimum had little effect upon growth of Mo17. The presence of T22 increased protein levels and activities of β-1,3 glucanase, exochitinase, and endochitinase in both roots and shoots, even though T22 colonized roots well but colonized shoots hardly at all. With some enzymes, the combination of T22 plus P. ultimum gave the greatest activity. Plants grown from T22-treated seed had reduced symptoms of anthracnose following inoculation of leaves with Colletotrichum graminicola, which indicates that root colonization by T22 induces systemic resistance in maize.

2001 ◽  
Vol 91 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Yeoung-Seuk Bae ◽  
Guy R. Knudsen

A fungivorous nematode, Aphelenchoides sp., was isolated from field soil by baiting with mycelium of the biocontrol fungus Trichoderma harzianum ThzID1, and subsequently was maintained on agar cultures of the fungus. Interactions between the nematode and the green fluorescent protein-producing transformant, T. harzianum ThzID1-M3, were investigated in both heat-treated (80°C, 30 min) and untreated field soil. ThzID1-M3 was identified in soil by epifluorescence microscopy. When ThzID1-M3 was added to soil as an alginate pellet formulation, addition of the nematode (10 per gram of soil) significantly reduced radial growth and recoverable populations of the fungus, and the effect was greater in heat-treated soil than in untreated soil. Addition of ThzID1-M3 to soil pretreated with the nematode (10 per gram of soil) stimulated nematode population growth for approximately 10 to 20 days, whereas nematode populations decreased in the absence of added Trichoderma sp. When sclerotia of Sclerotinia sclerotiorum were added to soil (10 per 200 g of soil) with ThzID1-M3 (40 pellets per 200 g of soil), addition of Aphe-lenchoides sp. (2,000 per 200 g of soil) reduced the number of sclerotia colonized by ThzID1-M3. These results suggest that fungivorous nematodes may be a significant biotic constraint on activity of biocontrol fungi in the field.


2009 ◽  
Vol 35 (3) ◽  
pp. 566-570 ◽  
Author(s):  
Jie-Ming WANG ◽  
Hai-Yang JIANG ◽  
Yang ZHAO ◽  
Yan XIANG ◽  
Su-Wen ZHU ◽  
...  

Crop Science ◽  
1987 ◽  
Vol 27 (2) ◽  
pp. 354-356 ◽  
Author(s):  
Z. W. Wicks ◽  
M. L. Carson

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guifang Lin ◽  
Cheng He ◽  
Jun Zheng ◽  
Dal-Hoe Koo ◽  
Ha Le ◽  
...  

Abstract Background The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies. Results Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression in seeds together with low expression of yellow endosperm 1 (y1) reduces carotenoid accumulation, accounting for the white seed phenotype of A188. Furthermore, transcriptome and epigenome analyses reveal enhanced expression of defense pathways and altered DNA methylation patterns of the embryonic callus. Conclusions The A188 genome assembly provides a high-resolution sequence for a complex genome species and a foundational resource for analyses of genome variation and gene function in maize. The genome, in comparison to B73, contains extensive intra-species structural variations and other genetic differences. Expression and network analyses identify discrete profiles for embryonic callus and other tissues.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0168850 ◽  
Author(s):  
Jawadayn Talib Alkooranee ◽  
Tamarah Raad Aledan ◽  
Ali Kadhim Ali ◽  
Guangyuan Lu ◽  
Xuekun Zhang ◽  
...  

2010 ◽  
Vol 9 (4) ◽  
pp. 2140-2147 ◽  
Author(s):  
X.-H. Liu ◽  
Z.-P. Zheng ◽  
Z.-B. Tan ◽  
Z. Li ◽  
C. He

2021 ◽  
Author(s):  
Fei Ge ◽  
Jingtao Qu ◽  
Peng Liu ◽  
Lang Pan ◽  
Chaoying Zou ◽  
...  

Heretofore, little is known about the mechanism underlying the genotype-dependence of embryonic callus (EC) induction, which has severely inhibited the development of maize genetic engineering. Here, we report the genome sequence and annotation of a maize inbred line with high EC induction ratio, A188, which is assembled from single-molecule sequencing and optical genome mapping. We assembled a 2,210 Mb genome with a scaffold N50 size of 11.61 million bases (Mb), compared to those of 9.73 Mb for B73 and 10.2 Mb for Mo17. Comparative analysis revealed that ~30% of the predicted A188 genes had large structural variations to B73, Mo17 and W22 genomes, which caused considerable protein divergence and might lead to phenotypic variations between the four inbred lines. Combining our new A188 genome, previously reported QTLs and RNA sequencing data, we reveal 8 large structural variation genes and 4 differentially expressed genes playing potential roles in EC induction.


2021 ◽  
Author(s):  
Saif ul Malook ◽  
Xiao-Feng Liu ◽  
Wende Liu ◽  
Jinfeng Qi ◽  
Shaoqun Zhou

Fall armyworm (Spodoptera frugiperda) is an invasive lepidopteran pest with strong feeding preference towards maize (Zea mays). Its success on maize is facilitated by a suite of specialized detoxification and manipulation mechanisms that curtail host plant defense responses. In this study, we identified a Chinese maize inbred line Xi502 that was able to mount effective defense in response to fall armyworm attack. Comparative transcriptomics analyses, phytohormonal measurements, and targeted benzoxazinoid quantification consistently demonstrate significant inducible defense responses in Xi502, but not in the susceptible reference inbred line B73. In 24 hours, fall armyworm larvae feeding on B73 showed accelerated maturation-oriented transcriptomic responses and more changes in detoxification gene expression compared to their Xi502-fed sibling. Interestingly, oral secretions collected from larvae fed on B73 and Xi502 leaves demonstrated distinct elicitation activity when applied on either host genotypes, suggesting that variation in both insect oral secretion composition and host plant alleles could influence plant defense response. These results revealed host plant adaptation towards counter-defense mechanisms in a specialist insect herbivore, adding yet another layer to the evolutionary arms race between maize and fall armyworm. This could facilitate future investigation into the molecular mechanisms in this globally important crop-pest interaction system.


Plant Science ◽  
1985 ◽  
Vol 41 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Keith Lowe ◽  
Delia Barnes Taylor ◽  
Pat Ryan ◽  
Karol E. Paterson

Sign in / Sign up

Export Citation Format

Share Document