scholarly journals Evaluation of in Vitro Culture Conditions to Demonstrate Pregnancy-Dependent Changes in Luteal Function in the Pig1

1994 ◽  
Vol 51 (2) ◽  
pp. 254-261 ◽  
Author(s):  
Teresa Wiesak ◽  
Robert T. Hardin ◽  
George R. Foxcroft
2014 ◽  
Vol 26 (1) ◽  
pp. 123
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
P. Hassel ◽  
...  

Two nuclear transfer (NT) techniques are routinely used to produce cloned animals, traditional cloning (TC) and handmade cloning (HMC). The TC embryos keep their zona and can be transferred at early stages, whereas HMC embryos are zona-free and must be cultured to the morula/blastocyst stage before transfer. Some studies have shown that in vitro culture reduces embryo development and quality, but it is not known whether embryos produced by TC or HMC differ because of the NT method or the in vitro culture. Therefore, we investigated the developmental competence and histone acetylation (H3K18ac) of porcine NT embryos produced by TC and HMC with (Day 5 and 6) or without (Day 0) in vitro culture. Nuclear transfer experiments were performed on same day (Day 0), using same batch of porcine oocytes and donor cells and same in vitro culture conditions. Cloning procedures were previously described (TC : Cloning Stem Cells 10 : 355; HMC : Zygote 20 : 61). Parthenogenetically activated embryos (PA) were used as control of activation and culture conditions. Embryos from all groups were collected for immunostaining of H3K18ac on Days 0, 5, and 6. The normalized H3K18ac level was calculated as previously described (Epigenetics 6 : 177). Cell numbers per blastocyst in each group were counted on Days 5 and 6. The cleavage rate (Day 2) and blastocyst rates (Days 5 and 6) between groups were analysed by Chi-squared test, whereas cell number per blastocysts and H3K18ac level between groups and days were analysed by ANOVA (SAS version 9.2; SAS Institute Inc., Cary, NC, USA). Cleavage rate of HMC embryos was lower than that of TC embryos, but blastocyst rate and cell number per blastocyst were higher in the HMC group compared with TC (Table 1). Differences of H3K18ac level between HMC, TC, and PA groups were only observed on Day 6 but not on Day 0 or Day 5. Within HMC and TC groups, there was no difference in H3K18ac level between Day 0 and Day 5, but the level was lower on Day 6 compared with Day 5 in the HMC group, whereas the TC group displayed the opposite pattern. In conclusion, NT embryos produced by HMC show higher blastocyst rate and cell number per blastocyst compared with TC embryos. Both in vitro culture and the NT method result in differences of the normalized H3K18ac levels. Further study is needed to investigate putative differences between NT embryos produced by HMC and TC compared to in vivo embryos also after transfer to recipients. Table 1.Cleavage and blastocyst rate, cell numbers, and normalized H3K18ac level for handmade cloning (HMC), traditional cloning (TC), and parthenogenetically activated (PA) embryos1


2018 ◽  
Vol 30 (1) ◽  
pp. 226
Author(s):  
F. C. Castro ◽  
L. Schefer ◽  
K. L. Schwarz ◽  
H. Fernandes ◽  
R. C. Botigelli ◽  
...  

Melatonin mediates several processes in animal reproduction and has drawn attention for its potent antioxidant, anti-apoptotic, anti-inflammatory action and, more recently, for its benefits on oocyte maturation and embryo development in vitro. The aim of this study was to assess the effect of melatonin during the in vitro maturation (IVM) on nuclear maturation of bovine oocytes and gene expression in their corresponding cumulus cells (CC). Bovine cumulus–oocyte complexes (COC) were obtained by aspiration of follicles (2-6 mm) from slaughterhouse ovaries, selected (grades I and II) and transferred to 4 well plates (25-30 COC/well) containing IVM medium [TCM-199 supplemented with sodium bicarbonate (26 mM), sodium pyruvate (0.25 mM), FSH (0.5 µg mL−1), LH (5.0 µg mL−1), 0.3% BSA, and gentamicin (50 µg mL−1)] with 0, 10−5, 10−7, 10−9 or 10−11 M melatonin and cultured for 24 h at 38.5°C and 5% CO2. At the end of IVM, oocytes were stained with Hoechst 33342 (10 μg mL−1) and evaluated for nuclear maturation rate. The CC were evaluated for the expression of antioxidant (SOD1, SOD2, GPX4), pro-apoptotic (P53, BAX) and expansion-related genes (PTX3, HAS1, HAS2). For transcript detection in CC, RNA isolation was performed with TRIzol®Reagent (Invitrogen, Carlsbad, CA, USA) and reverse transcription with High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA). Relative quantification of transcripts was performed by RT-qPCR using 3 endogenous controls (β-actin, GAPDH, PPIA). Nuclear maturation rate and gene expression were tested by ANOVA and means were compared by Tukey’s test (6 replicates). In CC, the different concentrations of melatonin did not significantly alter expression of the investigated genes (P > 0.05), although all concentrations provided a numerical increase in the expression of the antioxidant SOD1 and of the expansion-related genes PTX3 and HAS2. Regarding the pro-apoptotic genes, concentrations of 10−11 and 10−9 M were able to reduce only numerically the expression of BAX and P53, respectively. In oocytes, the rate of nuclear maturation was not different among the tested treatments (P > 0.05), but it was numerically higher in the 10−7 M melatonin treated group compared with the control (69.71 ± 13.76% v. 88.1 ± 12.54%). In conclusion, under the studied conditions, melatonin was unable to improve maturation rate or to affect the expression of antioxidant, pro-apoptotic, and expansion-related genes in CC. Melatonin during IVM has shown variable results in different studies and appears to show different effects depending on culture conditions and parameters studied. In order to take advantage of the possible positive antioxidant effects of melatonin, other culture conditions and parameters should be investigated. In a next step, melatonin will be included during in vitro culture of embryos to evaluate its possible cytoprotective role, because such embryos are more exposed to oxidative stress during in vitro culture, and to investigate its benefits on developmental competence in vitro. This reaesrch was funded by FAPESP (2015/20379-0; 2014/17181-0).


1986 ◽  
Vol 72 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Giuliana Porro ◽  
Elda Tagliabue ◽  
Sylvie Ménard ◽  
M.I. Colnaghi

1970 ◽  
Vol 35 (1) ◽  
pp. 135-142 ◽  
Author(s):  
MA Malek ◽  
D Khanam ◽  
M Khatun ◽  
MH Molla ◽  
MA Mannan

An experiment was conducted to study the in vitro culture of pointed gourd. Cotyledon rescued from physiologically matured seeds (PMS) and immatured seeds (IMS) of pointed gourd were used as explants. Cotyledon excised from PMS responded very well in all culture conditions. Plant regenerated from cotyledon of PMS ranged from 38 to 96% in different hormonal formulations of culture media. Highest percentage of shoot regeneration was observed in MS + 1.0 mg/l BAP and lowest in MS + 2.5 mg/l BAP. No plant regeneration was observed in cotyledon from immatured seeds. The highest percentage of root induction (99%) was achieved in half MS medium supplemented with 0.5 mg/l NAA. The regenerated plantlets were successfully established in earthen pot. Keywords: Cotyledon; in vitro; pointed gourd. DOI: 10.3329/bjar.v35i1.5874Bangladesh J. Agril. Res. 35(1) : 135-142, March 2010


2019 ◽  
Vol 56 (1) ◽  
pp. 122-133
Author(s):  
Badra Bouamama-Gzara ◽  
Hassène Zemni ◽  
Néjia Zoghlami ◽  
Samia Gandoura ◽  
Ahmed Mliki ◽  
...  

2007 ◽  
Vol 21 (3) ◽  
pp. 436-438 ◽  
Author(s):  
Lale Karabiyik ◽  
Hülya Türkan ◽  
Tahir Özışık ◽  
Mehmet Ali Saraçli ◽  
Tuncer Haznedaroǧlu

2007 ◽  
Vol 74 (9) ◽  
pp. 1149-1156 ◽  
Author(s):  
Raúl Fernández-Gonzalez ◽  
Miguel Angel Ramirez ◽  
Ainhoa Bilbao ◽  
Fernando Rodríguez De Fonseca ◽  
Alfonso Gutiérrez-Adán

Sign in / Sign up

Export Citation Format

Share Document