scholarly journals 3α-Hydroxysteroid Dehydrogenase Messenger RNA Transcription in the Immature Rat Ovary in Response to an Ovulatory Dose of Gonadotropin1

2001 ◽  
Vol 65 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Lawrence L. Espey ◽  
Shinya Yoshioka ◽  
Takeshi Ujioka ◽  
Shingo Fujii ◽  
JoAnne S. Richards
1981 ◽  
Vol 52 (9) ◽  
pp. 665-670
Author(s):  
Goro KATSUURA ◽  
Hajime MIYAMOTO ◽  
Takehiko ISHIBASHI

1994 ◽  
Vol 140 (3) ◽  
pp. 409-417 ◽  
Author(s):  
S A Ghersevich ◽  
M H Poutanen ◽  
H J Rajaniemi ◽  
R K Vihko

Abstract Antibodies against human placental 17β-hydroxysteroid dehydrogenase (17-HSD) and 17-HSD cDNA were used to study the expression of the corresponding enzyme in the immature rat ovary during follicular development and luteinization, which were induced by treating the animals with pregnant mare serum gonadotrophin (PMSG) or with PMSG followed by human chorionic gonadotrophin (hCG). Immuno-blot analysis indicated that the Mr of the 17-HSD expressed in rat granulosa cells was 35 000, as previously shown for the human placental enzyme. In immunohistochemical studies of untreated immature rat ovaries, only the granulosa cells from small antral follicles were stained. One day after PMSG treatment, strong expression of 17-HSD was observed in the granulosa cells of growing Graafian follicles. A marked decrease in enzyme expression was observed in preovulatory follicles on day 2 of PMSG treatment, starting from the basal layers of granulosa cells and progressing toward the luminal cells. No 17-HSD expression was detected in luteinized follicles or corpora lutea 22 h after hCG injection. The stroma and theca cells were negative for 17-HSD staining. In Northern hybridization analyses, two 17-HSD mRNAs were detected (1·4 and 1·7 kb). The strongest expression for both mRNAs was detected after 1 day of PMSG treatment, coinciding with maximal immunostaining of the enzyme protein. Down-regulation of 17-HSD observed by immunohistochemistry was reflected in a similar decrease in mRNA expression and the signals were almost undetectable 22 h after hCG injection. Our data suggest that 17-HSD expression in rat granulosa cells is up-regulated during follicular development and, thereafter, the enzyme expression is down-regulated during luteinization. Journal of Endocrinology (1994) 140, 409–417


2003 ◽  
Vol 68 (5) ◽  
pp. 1895-1902 ◽  
Author(s):  
L.L. Espey ◽  
T. Ujioka ◽  
H. Okamura ◽  
J.S. Richards

1977 ◽  
Vol 75 (1) ◽  
pp. 43-48 ◽  
Author(s):  
S. BAUMINGER ◽  
B. ECKSTEIN ◽  
H. R. LINDNER

The concentrations of testosterone, progesterone and 20α-hydroxypregn-4-en-3-one (20α-OHP) were measured in the ovaries of immature rats in which ovulation was induced by treatment with pregnant mare serum gonadotrophin (PMSG) and, 48 h later, with human chorionic gonadotrophin (HCG). The concentration of testosterone in the tissue increased significantly 48 h after treatment with PMSG, reached a peak 4 h after the administration of HCG and declined to the basal level 4 h later. Increases in the levels of progesterone and 20α-OHP were observed 4 h after the administration of HCG. Whereas the level of 20α-OHP continued to rise during the subsequent 30 h, progesterone levels declined near the presumed time of ovulation (12 h after administration of HCG). It is concluded that 20α-hydroxysteroid dehydrogenase activity is present in the immature rat ovary before ovulation and that an increase in the production of testosterone in the ovaries of rats treated with PMSG and HCG precedes increased production of progesterone and 20α-OHP in these ovaries.


1972 ◽  
Vol 70 (4) ◽  
pp. 758-766 ◽  
Author(s):  
Sudhansu K. Dey ◽  
Jayasree Sen Gupta ◽  
Sulekha Ghosh ◽  
C. Deb

ABSTRACT Suppression of succinic dehydrogenase (SDH) activity resulted in stimulation of glucose-6-phosphate dehydrogenase (G-6-PD) and Δ5-3β-hydroxysteroid dehydrogenase (Δ5-3β-OHD) activities in the immature rat ovary after malonate treatment. The same treatment also produced depletion in the ovarian ascorbic acid and elevation in cholesterol concentrations, together with increase in the ovarian and uterine weight. The results indicate that stimulation of ovarian steroidogenesis, resulting from accelerated pentose phosphate pathway in combination with increased concentration of cholesterol in the gland, is possibly due to a direct effect of malonate on the immature rat ovary. The rise in ovarian and uterine weights is not due to the decreased inactivation of oestrogen in the liver, but rather to stimulation of steroid hormone synthesis in the immature ovary following malonate administration.


1963 ◽  
Vol 42 (4) ◽  
pp. 480-484 ◽  
Author(s):  
B. Eckstein ◽  
R. Landsberg

ABSTRACT The succinic, malic and isocitric dehydrogenases in the ovary of immature and mature, normal and serum gonadotrophin injected rats were examined. The Qo2 of these enzymes were markedly enhanced in the gonadotrophin injected rats of both age groups, except in the case of succinic dehydrogenase in the ovary of the immature rats, where a slight non-significant decrease was noted. It is concluded that in the mature rat ovary, gonadotrophin administration stimulates the activity of all the examined dehydrogenases of the citric acid cycle, whereas in the immature rat ovary, at least the isocitric- and malic dehydrogenases are thus stimulated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muchen Pan ◽  
Ana L. Alvarez-Cabrera ◽  
Joon S. Kang ◽  
Lihua Wang ◽  
Chunhai Fan ◽  
...  

AbstractMammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.


Sign in / Sign up

Export Citation Format

Share Document