scholarly journals No significant change of extracranial conduit vessel diameter during cerebral vasomotor reactivity test with moderately‐altered end‐tidal CO 2

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Jie Liu ◽  
Thuy Tien Cao Le ◽  
Allan Knox ◽  
Jorge M Serrador
2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Fernando Gongora-Rivera ◽  
Adolfo Cordero-Perez ◽  
Alejandro Gonzalez-Aquines ◽  
Antonio Anaya-Escamilla ◽  
Eduardo Villarreal-Garza ◽  
...  

Background. Recent studies have shown that cerebral vascularity may be impaired in Alzheimer’s disease. Cerebral vasomotor reactivity could be an important biomarker for this pathology.Aims. The aim of this study was to investigate the alterations in cerebral vascular motor reactivity in Alzheimer’s disease subjects and to associate these changes with their cognitive scores.Methods. We recruited subjects with a diagnosis of Alzheimer’s disease and healthy controls. Demographic, clinical, imaging, and cognitive test were obtained. Then all participants performed a cerebral vascular motor reactivity test with 7% CO2 and cerebral blood flow velocities (CBFV) were recorded with transcranial doppler ultrasound before and after the test.Results. We recruited 45 subjects, 26 (21 female) Alzheimer’s disease participants and 19 (15 female) healthy controls. There were no differences in baseline cerebral blood flow velocities between the groups. After the cerebral vasomotor reactivity test, absolute mean difference in mean CBFV (ΔCBFV-m) was 8.70±4.14 versus 4.81±6.96 (p<0.01), respectively. Calculated percentage of change (%CVMR) was lower in the AD group 7.45±18.25 versus 23.29±17.48, and there was a positive but weak correlation with mini-mental scores (ρ=0.337, p=0.023).Conclusions. In this study, Alzheimer’s disease subjects showed significant changes in all absolute cerebral blood flow velocities after the cerebral vasomotor reactivity test with CO2, but only diastolic phase responses were statistically significant. There was a positive but weak correlation between cerebral vasomotor reactivity and cognitive scores. Further studies are needed to investigate these effects in larger Latin-American samples.


2019 ◽  
Vol 40 (3) ◽  
pp. 600-610 ◽  
Author(s):  
Tsubasa Tomoto ◽  
Jonathan Riley ◽  
Marcel Turner ◽  
Rong Zhang ◽  
Takashi Tarumi

Age is the strongest risk factor for cerebrovascular disease; however, age-related changes in cerebrovascular function are still not well understood. The objective of this study was to measure cerebral vasomotor reactivity (CVMR) during hypo- and hypercapnia across the adult lifespan. One hundred fifty-three healthy participants (21–80 years) underwent measurements of cerebral blood flow velocity (CBFV) via transcranial Doppler, mean arterial pressure (MAP) via plethysmograph, and end-tidal CO2 (EtCO2) via capnography during hyperventilation (hypocapnia) and a modified rebreathing protocol (hypercapnia). Cerebrovascular conductance (CVCi) and resistance (CVRi) indices were calculated from the ratios of CBFV and MAP. CVMRs were assessed by the slopes of CBFV and CVCi in response to changes in EtCO2. The baseline CBFV and CVCi decreased and CVRi increased with age. Advanced age was associated with progressive declines in CVMR during hypocapnia indicating reduced cerebral vasoconstriction, but increases in CVMR during hypercapnia indicating increased vasodilation. A negative correlation between hypo- and hypercapnic CVMRs was observed across all subjects (CBFV%/ EtCO2: r = −0.419, CVCi%/ EtCO2: r = −0.442, P < 0.0001). Collectively, these findings suggest that aging is associated with decreases in CBFV, increases in cerebrovascular resistance, reduced vasoconstriction during hypocapnia, but increased vasodilatory responsiveness during hypercapnia.


2000 ◽  
Vol 89 (4) ◽  
pp. 1275-1282 ◽  
Author(s):  
Giora Pillar ◽  
Atul Malhotra ◽  
Robert B. Fogel ◽  
Josee Beauregard ◽  
David I. Slamowitz ◽  
...  

Although pharyngeal muscles respond robustly to increasing Pco 2 during wakefulness, the effect of hypercapnia on upper airway muscle activation during sleep has not been carefully assessed. This may be important, because it has been hypothesized that CO2-driven muscle activation may importantly stabilize the upper airway during stages 3 and 4 sleep. To test this hypothesis, we measured ventilation, airway resistance, genioglossus (GG) and tensor palatini (TP) electromyogram (EMG), plus end-tidal Pco 2(Pet CO2 ) in 18 subjects during wakefulness, stage 2, and slow-wave sleep (SWS). Responses of ventilation and muscle EMG to administered CO2(Pet CO2 = 6 Torr above the eupneic level) were also assessed during SWS ( n = 9) or stage 2 sleep ( n = 7). Pet CO2 increased spontaneously by 0.8 ± 0.1 Torr from stage 2 to SWS (from 43.3 ± 0.6 to 44.1 ± 0.5 Torr, P < 0.05), with no significant change in GG or TP EMG. Despite a significant increase in minute ventilation with induced hypercapnia (from 8.3 ± 0.1 to 11.9 ± 0.3 l/min in stage 2 and 8.6 ± 0.4 to 12.7 ± 0.4 l/min in SWS, P < 0.05 for both), there was no significant change in the GG or TP EMG. These data indicate that supraphysiological levels of Pet CO2 (50.4 ± 1.6 Torr in stage 2, and 50.4 ± 0.9 Torr in SWS) are not a major independent stimulus to pharyngeal dilator muscle activation during either SWS or stage 2 sleep. Thus hypercapnia-induced pharyngeal dilator muscle activation alone is unlikely to explain the paucity of sleep-disordered breathing events during SWS.


2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Yong‐Sheng Zhu ◽  
Kyle Armstrong ◽  
Benjamin Y. Tseng ◽  
Dean Palmer ◽  
Benjamin D. Levine ◽  
...  

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Jonathan Riley ◽  
Takashi Tarumi ◽  
Rosemary Parker ◽  
Kyle Armstrong ◽  
Cynthia Tinajero ◽  
...  

2016 ◽  
Vol 120 (2) ◽  
pp. 282-296 ◽  
Author(s):  
Michael M. Tymko ◽  
Ryan L. Hoiland ◽  
Tomas Kuca ◽  
Lindsey M. Boulet ◽  
Joshua C. Tremblay ◽  
...  

Our aim was to quantify the end-tidal-to-arterial gas gradients for O2 (PET-PaO2) and CO2 (Pa-PETCO2) during a CO2 reactivity test to determine their influence on the cerebrovascular (CVR) and ventilatory (HCVR) response in subjects with (PFO+, n = 8) and without (PFO−, n = 7) a patent foramen ovale (PFO). We hypothesized that 1) the Pa-PETCO2 would be greater in hypoxia compared with normoxia, 2) the Pa-PETCO2 would be similar, whereas the PET-PaO2 gradient would be greater in those with a PFO, 3) the HCVR and CVR would be underestimated when plotted against PETCO2 compared with PaCO2, and 4) previously derived prediction algorithms will accurately target PaCO2. PETCO2 was controlled by dynamic end-tidal forcing in steady-state steps of −8, −4, 0, +4, and +8 mmHg from baseline in normoxia and hypoxia. Minute ventilation (V̇E), internal carotid artery blood flow (Q̇ICA), middle cerebral artery blood velocity (MCAv), and temperature corrected end-tidal and arterial blood gases were measured throughout experimentation. HCVR and CVR were calculated using linear regression analysis by indexing V̇E and relative changes in Q̇ICA, and MCAv against PETCO2, predicted PaCO2, and measured PaCO2. The Pa-PETCO2 was similar between hypoxia and normoxia and PFO+ and PFO−. The PET-PaO2 was greater in PFO+ by 2.1 mmHg during normoxia ( P = 0.003). HCVR and CVR plotted against PETCO2 underestimated HCVR and CVR indexed against PaCO2 in normoxia and hypoxia. Our PaCO2 prediction equation modestly improved estimates of HCVR and CVR. In summary, care must be taken when indexing reactivity measures to PETCO2 compared with PaCO2.


2020 ◽  
Vol 9 (12) ◽  
pp. 4088
Author(s):  
Shyan-Lung Lin ◽  
Shoou-Jeng Yeh ◽  
Ching-Kun Chen ◽  
Yu-Liang Hsu ◽  
Chih-En Kuo ◽  
...  

Postural orthostatic tachycardia syndrome (POTS) typically occurs in youths, and early accurate POTS diagnosis is challenging. A recent hypothesis suggests that upright cognitive impairment in POTS occurs because reduced cerebral blood flow velocity (CBFV) and cerebrovascular response to carbon dioxide (CO2) are nonlinear during transient changes in end-tidal CO2 (PETCO2). This novel study aimed to reveal the interaction between cerebral autoregulation and ventilatory control in POTS patients by using tilt table and hyperventilation to alter the CO2 tension between 10 and 30 mmHg. The cerebral blood flow velocity (CBFV), partial pressure of end-tidal carbon dioxide (PETCO2), and other cardiopulmonary signals were recorded for POTS patients and two healthy groups including those aged >45 years (Healthy-Elder) and aged <45 years (Healthy-Youth) throughout the experiment. Two nonlinear regression functions, Models I and II, were applied to evaluate their CBFV-PETCO2 relationship and cerebral vasomotor reactivity (CVMR). Among the estimated parameters, the curve-fitting Model I for CBFV and CVMR responses to CO2 for POTS patients demonstrated an observable dissimilarity in CBFVmax (p = 0.011), mid-PETCO2 (p = 0.013), and PETCO2 range (p = 0.023) compared with those of Healthy-Youth and in CBFVmax (p = 0.015) and CVMRmax compared with those of Healthy-Elder. With curve-fitting Model II for POTS patients, the fit parameters of curvilinear (p = 0.036) and PETCO2 level (p = 0.033) displayed significant difference in comparison with Healthy-Youth parameters; range of change (p = 0.042), PETCO2 level, and CBFVmax also displayed a significant difference in comparison with Healthy-Elder parameters. The results of this study contribute toward developing an early accurate diagnosis of impaired CBFV responses to CO2 for POTS patients.


Sign in / Sign up

Export Citation Format

Share Document