scholarly journals Omics of Plastoglobule Lipid Droplets from the “Resurrection Plant” Eragrostis nindensis

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Kiran‐Kumar Shivaiah ◽  
Peter Lundquist
Author(s):  
T. M. Murad ◽  
Karen Israel ◽  
Jack C. Geer

Adrenal steroids are normally synthesized from acetyl coenzyme A via cholesterol. Cholesterol is also shown to enter the adrenal gland and to be localized in the lipid droplets of the adrenal cortical cells. Both pregnenolone and progesterone act as intermediates in the conversion of cholesterol into steroid hormones. During pregnancy an increased level of plasma cholesterol is known to be associated with an increase of the adrenal corticoid and progesterone. The present study is designed to demonstrate whether the adrenal cortical cells show any dynamic changes during pregnancy.


Author(s):  
J. Curtis ◽  
K. S. Schwartz ◽  
R. P. Apkarian

A scanning electron microscope (SEM) study was made of the effect of adrenocorticotropic hormone (ACTH) on the size and numbers of fenestrae/unit area in the capillary endothelium of the zona fasciculata (ZF) of the rat adrenal. The stimulatory effect of ACTH on cholesterol uptake via high density lipoproteins in the rat and evidence for the secretion of glucocorticoids by exocytosis of lipid droplets described by Rhodin suggest that endothelial change may accompany these transport phenomena.Twelve rats received two Dexamethasone (DEX) ip injections (25 μg DEX/100 g body wt.), the first at 8 PM and the second at 8 AM the next day, to inhibit the release of endogenous ACTH by the anterior pituitary. The animals were then divided into two groups. Six animals received only saline vehicle and six rats received ACTH (100 ng/100 g body wt.).


Author(s):  
D.N. Collins ◽  
J.N. Turner ◽  
K.O. Brosch ◽  
R.F. Seegal

Polychlorinated biphenyls (PCBs) are a ubiquitous class of environmental pollutants with toxic and hepatocellular effects, including accumulation of fat, proliferated smooth endoplasmic recticulum (SER), and concentric membrane arrays (CMAs) (1-3). The CMAs appear to be a membrane storage and degeneration organelle composed of a large number of concentric membrane layers usually surrounding one or more lipid droplets often with internalized membrane fragments (3). The present study documents liver alteration after a short term single dose exposure to PCBs with high chlorine content, and correlates them with reported animal weights and central nervous system (CNS) measures. In the brain PCB congeners were concentrated in particular regions (4) while catecholamine concentrations were decreased (4-6). Urinary levels of homovanillic acid a dopamine metabolite were evaluated (7).Wistar rats were gavaged with corn oil (6 controls), or with a 1:1 mixture of Aroclor 1254 and 1260 in corn oil at 500 or 1000 mg total PCB/kg (6 at each level).


Author(s):  
Masako Yamada ◽  
Yutaka Tanuma

Although many fine structural studies on the vertebrate liver have been reported on mammals, avians, reptiles, amphibians, teleosts and cyclostomes, there are no studies on elasmobranchii liver except one by T. Ito etal. (1962) who studied it on light microscopic level. The purpose of the present study was to as certain the ultrastructural details and cytochemical characteristics of normal elasmobranchii liver and was to compare with the other higher vertebrate ones.Seventeen Scyliorhinus torazame, one kind of elasmobranchii, were obtained from the fish stock of the Ueno Zoo aquarium, Ueno, Tokyo. The sharks weighing about 300-600g were anesthetized with MS-222 (Sigma), and the livers were fixed by perfusion fixation via the portal vein according to the procedure of Y. Saito et al. (1980) for 10 min. Then the liver tissues were immersed in the same fixative for 2 hours and postfixed with 1% OsO4-solution in 0.1 Mc acodylate buffer for one hour. In order to make sure a phagocytic activity of Kupffer cells, latex particles (0.8 μm in diameter, 0.05mg/100 g b.w.) were injected through the portal vein for one min before fixation. For preservation of lipid droplets in the cytoplasm, a series of these procedure were performed under ice cold temperature until the end of dehydration.


Author(s):  
Jean Fincher

An important trend in the food industry today is reduction in the amount of fat in manufactured foods. Often fat reduction is accomplished by replacing part of the natural fat with carbohydrates which serve to bind water and increase viscosity. It is in understanding the roles of these two major components of food, fats and carbohydrates, that freeze-fracture is so important. It is well known that conventional fixation procedures are inadequate for many food products, in particular, foods with carbohydrates as a predominant structural feature. For some food science applications the advantages of freeze-fracture preparation procedures include not only the avoidance of chemical fixatives, but also the opportunity to control the temperature of the sample just prior to rapid freezing.In conventional foods freeze-fracture has been used most successfully in analysis of milk and milk products. Milk gels depend on interactions between lipid droplets and proteins. Whipped emulsions, either whipped cream or ice cream, involve complex interactions between lipid, protein, air cell surfaces, and added emulsifiers.


2020 ◽  
Author(s):  
Masayasu Taki ◽  
Keiji Kajiwara ◽  
Eriko Yamaguchi ◽  
Yoshikatsu Sato ◽  
Shigehiro Yamaguchi

Lipid droplets (LDs) are essential organelle in most eukaryotes, and tracking intracellular LDs dynamics using synthetic small molecules is crucial for biological studies. However, only a limited number of fluorescent markers that satisfy all requirements, such as the selective staining of LDs, high photostability, and sufficient biocompatibility, have been developed. Herein, we report a series of donor-p-acceptor dyes based on the thiophene-containing fused polycyclic scaffold [1]benzothieno[3,2-<i>b</i>][1]benzothiophene (BTBT), in which either or both thiophene rings are oxidized into thiophene-<i>S</i>,<i>S</i>-dioxide to form an electron-accepting building block. Among these dyes, LAQ1 satisfied all the aforementioned requirements, and allowed us capturing ultra-small LDs on the endoplasmic reticulum (ER) membrane by stimulation emission depletion (STED) microscopy with a super-resolution below the diffraction limit of light. Moreover, the extremely high photostability of LAQ1 enabled recording the lipolysis of LDs and the concomitant lipogenesis as well as long-term trajectory analysis of micro LDs at the single particle level in living cells.


2019 ◽  
Author(s):  
Adam Eördögh ◽  
Carolina Paganini ◽  
Dorothea Pinotsi ◽  
Paolo Arosio ◽  
Pablo Rivera-Fuentes

<div>Photoactivatable dyes enable single-molecule imaging in biology. Despite progress in the development of new fluorophores and labeling strategies, many cellular compartments remain difficult to image beyond the limit of diffraction in living cells. For example, lipid droplets, which are organelles that contain mostly neutral lipids, have eluded single-molecule imaging. To visualize these challenging subcellular targets, it is necessary to develop new fluorescent molecular devices beyond simple on/off switches. Here, we report a fluorogenic molecular logic gate that can be used to image single molecules associated with lipid droplets with excellent specificity. This probe requires the subsequent action of light, a lipophilic environment and a competent nucleophile to produce a fluorescent product. The combination of these requirements results in a probe that can be used to image the boundary of lipid droplets in three dimensions with resolutions beyond the limit of diffraction. Moreover, this probe enables single-molecule tracking of lipids within and between droplets in living cells.</div>


Sign in / Sign up

Export Citation Format

Share Document