Disequilibrium: Investigating the Resurrection Plant

Science Scope ◽  
2019 ◽  
Vol 042 (08) ◽  
Author(s):  
Todd Hoover
Keyword(s):  
2007 ◽  
Vol 34 (7) ◽  
pp. 589 ◽  
Author(s):  
Tuan Ngoc Le ◽  
Cecilia K. Blomstedt ◽  
Jianbo Kuang ◽  
Jennifer Tenlen ◽  
Donald F. Gaff ◽  
...  

The desiccation tolerant grass Sporobolus stapfianus Gandoger can modulate cellular processes to prevent the imposition of irreversible damage to cellular components by water deficit. The cellular processes conferring this ability are rapidly attenuated by increased water availability. This resurrection plant can quickly restore normal metabolism. Even after loss of more than 95% of its total water content, full rehydration and growth resumption can occur within 24 h. To study the molecular mechanisms of desiccation tolerance in S. stapfianus, a cDNA library constructed from dehydration-stressed leaf tissue, was differentially screened in a manner designed to identify genes with an adaptive role in desiccation tolerance. Further characterisation of four of the genes isolated revealed they are strongly up-regulated by severe dehydration stress and only in desiccation-tolerant tissue, with three of these genes not being expressed at detectable levels in hydrated or dehydrating desiccation-sensitive tissue. The nature of the putative proteins encoded by these genes are suggestive of molecular processes associated with protecting the plant against damage caused by desiccation and include a novel LEA-like protein, and a pore-like protein that may play an important role in peroxisome function during drought stress. A third gene product has similarity to a nuclear-localised protein implicated in chromatin remodelling. In addition, a UDPglucose glucosyltransferase gene has been identified that may play a role in controlling the bioactivity of plant hormones or secondary metabolites during drought stress.


1999 ◽  
Vol 155 (6) ◽  
pp. 719-726 ◽  
Author(s):  
M. Vicré ◽  
H.W. Sherwin ◽  
A. Driouich ◽  
M.A. Jaffer ◽  
J.M. Farrant

2017 ◽  
Vol 41 (3) ◽  
pp. 533-547 ◽  
Author(s):  
Freedom Tshabuse ◽  
Jill M. Farrant ◽  
Lydie Humbert ◽  
Deborah Moura ◽  
Dominique Rainteau ◽  
...  

2015 ◽  
Vol 167 (4) ◽  
pp. 1554-1565 ◽  
Author(s):  
Dana Charuvi ◽  
Reinat Nevo ◽  
Eyal Shimoni ◽  
Leah Naveh ◽  
Ahmad Zia ◽  
...  

2021 ◽  
Author(s):  
Rose A. Marks ◽  
Mpho Mbobe ◽  
Marilize Greyling ◽  
Jennie Pretorius ◽  
D. Nicholas McLetchie ◽  
...  

ABSTRACTResilience to abiotic stress is associated with a suite of functional traits related to defense and longevity. Stress tolerant plants are generally slow growing with extended leave lifespans and reduced allocation to reproduction. Resurrection plants are ideal systems to test for trade-offs associated with stress tolerance due to their extreme resiliency. While, growth defense trade-offs are well-characterized, few studies have tested for natural variation associated with tolerating the harshest environments. Here, we surveyed a suite of functional traits related to stress tolerance, leaf economics, and reproductive allocation in natural populations of the South African resurrection plant Myrothamnus flabellifolia. We selected three distinct field sites in South Africa ranging from mesic to xeric. Despite considerable environmental variation across the study area, M. flabellifolia plants were extremely and similarly stress tolerant at all sites. However, we detected notable variation in other life history and morphological traits. Plants in more mesic sites were larger, faster growing, and had more inflorescences. In contrast, plants from the most xeric sites appeared to invest more in persistence and defense, with lower growth rates and less reproductive allocation. Together, this suggests that desiccation tolerance is a binary trait in M. flabellifolia with little natural variation, but that other phenotypes are more labile. The trait syndromes exhibited by plants at the different study sites align with general expectations about growth defense tradeoffs associated with the colonization of extreme environments. We show that plants from the least stressful sites are more reproductive and faster growing, whereas plants from the most stressful sites were slower growing and less reproductive. These findings suggest that M. flabellifolia plants are finely tuned to their environment.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Zhennan Zhang ◽  
Bo Wang ◽  
Dongmei Sun ◽  
Xin Deng

AbstractSmall heat shock proteins (sHSPs) are a class of molecular chaperones that bind to and prevent aggregation of proteins. To assess the potential role of sHSPs in protection against abiotic stresses, we conducted a screening of sHSP genes from the desiccation-tolerant resurrection plant Boea hygrometrica, which is widespread in East Asia in alkaline, calcium-rich limestone crevices. In total, 25 sHSP genes, belonging to six subgroups, were identified from the desiccated leaves of B. hygrometrica. Ten of these genes were cloned and named according to the nomenclature proposed for sHSPs. Transcripts of all these BhsHSPs were detectable in fresh leaves, but only 6 genes were induced after desiccation, and remained high during rehydration. Four of the cytosol-targeted BhsHSP genes were up-regulated under treatments, such as heat, cold, alkaline conditions, high calcium, oxidation, or application of the phytohormone abscisic acid. Together, these results demonstrate that CI and CII sHSPs, especially Bh17.9CI and Bh17.4BCII, are associated with abiotic stresses, and may function in the maintenance of protein stability, aiding in the adaptations to extreme environmental conditions in which B. hygrometrica can survive.


Sign in / Sign up

Export Citation Format

Share Document