scholarly journals Furcula Diversity Within the Avian Flight Apparatus

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Samuel Sullivan ◽  
Casey Holliday
Keyword(s):  
2014 ◽  
Vol 10 (8) ◽  
pp. 20140497 ◽  
Author(s):  
Dennis Evangelista ◽  
Sharlene Cam ◽  
Tony Huynh ◽  
Igor Krivitskiy ◽  
Robert Dudley

Mechanisms of aerial righting in juvenile chukar partridge ( Alectoris chukar ) were studied from hatching to 14 days-post-hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose-down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e. wing-assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development and are potentially relevant to understanding the origins of avian flight.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Guillermo Navalón ◽  
Jesús Marugán-Lobón ◽  
Luis M. Chiappe ◽  
José Luis Sanz ◽  
Ángela D. Buscalioni

2018 ◽  
Vol 285 (1873) ◽  
pp. 20172329 ◽  
Author(s):  
Christine Howard ◽  
Philip A. Stephens ◽  
Joseph A. Tobias ◽  
Catherine Sheard ◽  
Stuart H. M. Butchart ◽  
...  

Climate change is predicted to increase migration distances for many migratory species, but the physiological and temporal implications of longer migratory journeys have not been explored. Here, we combine information about species' flight range potential and migratory refuelling requirements to simulate the number of stopovers required and the duration of current migratory journeys for 77 bird species breeding in Europe. Using tracking data, we show that our estimates accord with recorded journey times and stopovers for most species. We then combine projections of altered migratory distances under climate change with models of avian flight to predict future migratory journeys. We find that 37% of migratory journeys undertaken by long-distance migrants will necessitate an additional stopover in future. These greater distances and the increased number of stops will substantially increase overall journey durations of many long-distance migratory species, a factor not currently considered in climate impact studies.


1973 ◽  
Vol 58 (3) ◽  
pp. 689-709 ◽  
Author(s):  
VANCE A. TUCKER

1. Pennycuick's (1969) theory for the energetic requirements of avian flight predicts the metabolic rates of budgerigars and laughing gulls flying level at intermediate speeds in a wind tunnel with an accuracy of 10% or better. However, its predictions appear to be low for most birds with masses less than 0·1 kg and high for most birds with masses greater than 0·5 kg. 2. Four modifications are made to Pennycuick's theory: (1) a different computation of induced power; (2) a different estimate of equivalent flat plate area that includes Reynolds number effects, and is based on additional measurements; (3) a different estimate of profile power that includes Reynolds number effects; and (4) the addition of power terms for respiration and circulation. These modifications improve the agreement between the theoretical predictions and existing measurements for flying birds and bats. 3. The metabolic rates of birds and bats in level flight at various speeds can be estimated by the modified theory if body mass alone is measured. Improved estimates can be made if wing span is measured as well. In the latter case the theory predicts measured values with a mean absolute error of 8·3%. 4. The results of the modified theory are presented by approximate equations that can be solved quickly for metabolic rate and flight speed with a slide rule.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ashley M. Heers ◽  
Stephanie L. Varghese ◽  
Leila K. Hatier ◽  
Jeremiah J. Cabrera

The evolution of avian flight is one of the great transformations in vertebrate history, marked by striking anatomical changes that presumably help meet the demands of aerial locomotion. These changes did not occur simultaneously, and are challenging to decipher. Although extinct theropods are most often compared to adult birds, studies show that developing birds can uniquely address certain challenges and provide powerful insights into the evolution of avian flight: unlike adults, immature birds have rudimentary, somewhat “dinosaur-like” flight apparatuses and can reveal relationships between form, function, performance, and behavior during flightless to flight-capable transitions. Here, we focus on the musculoskeletal apparatus and use CT scans coupled with a three-dimensional musculoskeletal modeling approach to analyze how ontogenetic changes in skeletal anatomy influence muscle size, leverage, orientation, and corresponding function during the development of flight in a precocial ground bird (Alectoris chukar). Our results demonstrate that immature and adult birds use different functional solutions to execute similar locomotor behaviors: in spite of dramatic changes in skeletal morphology, muscle paths and subsequent functions are largely maintained through ontogeny, because shifts in one bone are offset by changes in others. These findings help provide a viable mechanism for how extinct winged theropods with rudimentary pectoral skeletons might have achieved bird-like behaviors before acquiring fully bird-like anatomies. These findings also emphasize the importance of a holistic, whole-body perspective, and the need for extant validation of extinct behaviors and performance. As empirical studies on locomotor ontogeny accumulate, it is becoming apparent that traditional, isolated interpretations of skeletal anatomy mask the reality that integrated whole systems function in frequently unexpected yet effective ways. Collaborative and integrative efforts that address this challenge will surely strengthen our exploration of life and its evolutionary history.


2020 ◽  
Vol 16 (12) ◽  
pp. 20200786
Author(s):  
Jessica L. Yorzinski

Visual attention plays a fundamental role in avian flight but attention is likely limited whenever birds blink. Because blinks are necessary to maintaining proper vision, this study tested the hypothesis that birds strategically inhibit their blinks in flight. The blinks of captive great-tailed grackles ( Quiscalus mexicanus ) were recorded before, during and after they flew a short distance in an open environment. The grackles spent the least amount of time blinking in flight (take-off, during flight and landing) and the most amount of time blinking at impact. Their blinking behaviour was similar before and after flight. These results suggest that grackles strategically inhibit their blinking behaviour in flight, potentially because blinks impose costs to avian flight.


Nature ◽  
2006 ◽  
Vol 445 (7125) ◽  
pp. 307-310 ◽  
Author(s):  
David B. Baier ◽  
Stephen M. Gatesy ◽  
Farish A. Jenkins
Keyword(s):  

Author(s):  
Vincent Lostanlen ◽  
Justin Salamon ◽  
Andrew Farnsworth ◽  
Steve Kelling ◽  
Juan Pablo Bello
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document