scholarly journals Dietary Iron Intake in Excess of Requirements Impairs Intestinal Copper Absorption in Sprague‐Dawley Rat Dams, Causing Copper Deficiency in Neonatal Pups

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Jennifer Lee ◽  
Jung‐Heun Ha ◽  
James Collins
2017 ◽  
Vol 313 (4) ◽  
pp. G353-G360 ◽  
Author(s):  
Jung-Heun Ha ◽  
Caglar Doguer ◽  
James F. Collins

High-iron feeding of rodents has been commonly used to model human iron-overload disorders. We recently noted that high-iron consumption impaired growth and caused severe systemic copper deficiency in growing rats, but the mechanism by which this occurred could not be determined due to technical limitations. In the current investigation, we thus utilized mice; first to determine if the same phenomenon occurred in another mammalian species, and second since we could assess in vivo copper absorption in mice. We hypothesized that excessive dietary iron impaired intestinal copper absorption. Weanling, male mice were thus fed AIN-93G-based diets containing high (HFe) (~8,800 ppm) or adequate (AdFe) (~80 ppm) iron in combination with low (~0.9 ppm), adequate (~9 ppm), or high (~180 ppm) copper for several weeks. Iron and copper homeostasis was subsequently assessed. Mice consuming the HFe diets grew slower, were anemic, and had lower hepatic copper levels and serum ceruloplasmin activity. These physiological perturbations were all prevented by higher dietary copper, demonstrating that copper depletion was the underlying cause. Furthermore, homeostatic regulation of copper absorption was noted in the mice consuming the AdFe diets, with absorption increasing as dietary copper decreased. HFe-fed mice did not have impaired copper absorption (disproving our hypothesis), but homeostatic control of absorption was disrupted. There were also noted perturbations in the tissue distribution of copper in the HFe-fed mice, suggesting that altered storage and thus bioavailability contributed to the noted copper deficiency. Dietary iron loading thus antagonizes copper homeostasis leading to pathological symptoms of severe copper depletion. NEW & NOTEWORTHY High-iron feeding is a common experimental method to model human iron-overload disorders in rodents. Here, we show that dietary iron loading causes severe copper deficiency due to perturbations in the homeostatic regulation of intestinal copper absorption and tissue distribution, which may decrease the bioavailability of copper for use in cuproenzyme synthesis. Whether high-dose iron supplementation in humans antagonizes copper homeostasis is worthy of consideration.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 338
Author(s):  
Jennifer K. Lee ◽  
Jung-Heun Ha ◽  
James F. Collins

Physiologically relevant iron-copper interactions have been frequently documented. For example, excess enteral iron inhibits copper absorption in laboratory rodents and humans. Whether this also occurs during pregnancy and lactation, when iron supplementation is frequently recommended, is, however, unknown. Here, the hypothesis that high dietary iron will perturb copper homeostasis in pregnant and lactating dams and their pups was tested. We utilized a rat model of iron-deficiency/iron supplementation during pregnancy and lactation to assess this possibility. Rat dams were fed low-iron diets early in pregnancy, and then switched to one of 5 diets with normal (1×) to high iron (20×) until pups were 14 days old. Subsequently, copper and iron homeostasis, and intestinal copper absorption (by oral, intragastric gavage with 64Cu), were assessed. Copper depletion/deficiency occurred in the dams and pups as dietary iron increased, as evidenced by decrements in plasma ceruloplasmin (Cp) and superoxide dismutase 1 (SOD1) activity, depletion of hepatic copper, and liver iron loading. Intestinal copper transport and tissue 64Cu accumulation were lower in dams consuming excess iron, and tissue 64Cu was also low in suckling pups. In some cases, physiological disturbances were noted when dietary iron was only ~3-fold in excess, while for others, effects were observed when dietary iron was 10–20-fold in excess. Excess enteral iron thus antagonizes the absorption of dietary copper, causing copper depletion in dams and their suckling pups. Low milk copper is a likely explanation for copper depletion in the pups, but experimental proof of this awaits future experimentation.


2004 ◽  
Vol 286 (6) ◽  
pp. L1275-L1281 ◽  
Author(s):  
Scott A. Barman ◽  
Shu Zhu ◽  
Richard E. White

Normally, signaling mechanisms that activate large-conductance, calcium- and voltage-activated potassium (BKCa) channels in pulmonary vascular smooth muscle cause pulmonary vasodilatation. BKCa-channel modulation is important in the regulation of pulmonary arterial pressure, and inhibition (decrease in the opening probability) of the BKCa channel has been implicated in the development of pulmonary vasoconstriction. Protein kinase C (PKC) causes pulmonary vasoconstriction, but little is known about the effect of PKC on BKCa-channel activity in pulmonary vascular smooth muscle. Accordingly, studies were done to determine the effect of PKC on BKCa-channel activity using patch-clamp studies in pulmonary arterial smooth muscle cells (PASMCs) of the Sprague-Dawley rat. The PKC activators phorbol myristate acetate (PMA) and thymeleatoxin opened BKCa channels in single Sprague-Dawley rat PASMC. The activator response to both PMA and thymeleatoxin on BKCa-channel activity was blocked by Gö-6983, which selectively blocks PKC-α, -δ, -γ, and -ζ, and by rottlerin, which selectively inhibits PKC-δ. In addition, the specific cyclic GMP-dependent protein kinase antagonist KT-5823 blocked the responses to PMA and thymelatoxin, whereas the specific cyclic AMP-dependent protein kinase blocker KT-5720 had no effect. In isolated pulmonary arterial vessels, both PMA and forskolin caused vasodilatation, which was inhibited by KT-5823, Gö-6983, or the BKCa-channel blocker tetraethylammonium. The results of this study indicate that activation of specific PKC isozymes increases BKCa-channel activity in Sprague-Dawley rat PASMC via cyclic GMP-dependent protein kinase, which suggests a unique signaling mechanism for vasodilatation.


Transfusion ◽  
2013 ◽  
Vol 54 (3pt2) ◽  
pp. 770-774 ◽  
Author(s):  
Alison O. Booth ◽  
Karen Lim ◽  
Hugh Capper ◽  
David Irving ◽  
Jenny Fisher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document