scholarly journals Investigating the molecular basis of temperature‐dependent sex determination in the painted turtle

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Katherine Lynn O'Shaughnessy ◽  
Nicole Valenzuela ◽  
Jennifer Neuwald ◽  
Robert Literman ◽  
Amanda Harris ◽  
...  
1995 ◽  
Vol 350 (1333) ◽  
pp. 297-304 ◽  

Many reptiles do not have heteromorphic sex chromosomes and for these species sex is determined during embryogenesis by the temperature of egg incubation rather than at conception. The phenomenon of temperature- dependent sex determination (TSD) was discovered almost thirty years ago, but few advances have been made towards the elucidation of its mechanism. In the past few years substantial progress has been made in the understanding of the molecular basis of XY chromosomal (genetic) sex determination (GSD) through the discovery of SRY. It is now possible to start comparing TSD with GSD. TSD is found in some evolutionarily ancient vertebrates and has been postulated to be the ancestral process from which GSD has evolved. If this is true then the two mechanisms may share a common molecular basis. This paper details the current knowledge of GSD, our progress on the investigation of the involvement of SRY-type proteins, and finally presents some of the problems that need to be resolved to gain an understanding of the molecular basis of TSD.


2021 ◽  
pp. 1-9
Author(s):  
Horacio Merchant-Larios ◽  
Verónica Díaz-Hernández ◽  
Diego Cortez

The discovery in mammals that fetal testes are required in order to develop the male phenotype inspired research efforts to elucidate the mechanisms underlying gonadal sex determination and differentiation in vertebrates. A pioneer work in 1966 that demonstrated the influence of incubation temperature on sexual phenotype in some reptilian species triggered great interest in the environment’s role as a modulator of plasticity in sex determination. Several chelonian species have been used as animal models to test hypotheses concerning the mechanisms involved in temperature-dependent sex determination (TSD). This brief review intends to outline the history of scientific efforts that corroborate our current understanding of the state-of-the-art in TSD using chelonian species as a reference.


2011 ◽  
Vol 7 (3) ◽  
pp. 443-448 ◽  
Author(s):  
Alexander E. Quinn ◽  
Stephen D. Sarre ◽  
Tariq Ezaz ◽  
Jennifer A. Marshall Graves ◽  
Arthur Georges

Sex in many organisms is a dichotomous phenotype—individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW–XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.


2018 ◽  
Vol 222 (1) ◽  
pp. jeb190215 ◽  
Author(s):  
Melanie D. Massey ◽  
Sarah M. Holt ◽  
Ronald J. Brooks ◽  
Njal Rollinson

Sign in / Sign up

Export Citation Format

Share Document