scholarly journals Biphasic ENaC regulation by IKKβ in lung and kidney epithelial cells

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Kenneth R. Hallows ◽  
Rodrigo Alzamora ◽  
Preston Goodson ◽  
Christy Smolak ◽  
Nuria M. Pastor‐Soler ◽  
...  
2021 ◽  
Vol 4 (5) ◽  
pp. 1514-1527
Author(s):  
Rafael R. G. Machado ◽  
Talita Glaser ◽  
Danielle B. Araujo ◽  
Lyvia Lintzmaier Petiz ◽  
Danielle B. L. Oliveira ◽  
...  

2008 ◽  
Vol 15 (7) ◽  
pp. 1060-1066 ◽  
Author(s):  
Akiko Uehara ◽  
Yasuhiko Hirabayashi ◽  
Haruhiko Takada

ABSTRACT Antineutrophil cytoplasmic antibodies (ANCA) are autoantibodies, the detection of which in serum can be used in the diagnosis of Wegener's granulomatosis (WG). Proteinase 3 (PR3) is a major target antigen of ANCA in WG patients, and the interaction of PR3 ANCA with leukocytes causes a debilitating autoimmune disease. The first signs and symptoms in WG patients are observed in the oral cavity, lungs, and kidneys. Human epithelial cells generally do not secrete proinflammatory cytokines upon stimulation with pathogen-associated molecular patterns (PAMPs). In this study, anti-PR3 antibodies (Abs) and PR3 ANCA-containing sera from WG patients endowed human oral, lung, and kidney epithelial cells with responsiveness to PAMPs in terms of the production of proinflammatory cytokines, such as interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1, and tumor necrosis factor alpha. Protease-activated receptor-2 (PAR-2) agonist peptides mimicked the priming effects of PR3 ANCA against PAMPs. Furthermore, the anti-PR3 Ab-mediated cell activation was significantly abolished by RNA interference targeting PAR-2 and NF-κB. This is the first report of priming effects of anti-PR3 Abs (PR3 ANCA) on epithelial cells. The results suggest that anti-PR3 Abs (PR3 ANCA) prime human epithelial cells to produce cytokines upon stimulation with various PAMPs, and these mechanisms may be involved in severe chronic inflammation in WG.


Author(s):  
Takaharu Ichimura ◽  
Yutaro Mori ◽  
Philipp Aschauer ◽  
Krishna M Padmanabha Das ◽  
Robert F Padera ◽  
...  

SARS-CoV-2 precipitates respiratory distress by infection of airway epithelial cells and is often accompanied by acute kidney injury. We report that Kidney Injury Molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1) is expressed in lung and kidney epithelial cells in COVID-19 patients and is a receptor for SARS-CoV-2. Human and mouse lung and kidney epithelial cells express KIM-1 and endocytose nanoparticles displaying the SARS-CoV-2 spike protein (virosomes). Uptake was inhibited both by anti-KIM-1 antibodies and by TW-37, our newly discovered inhibitor of KIM-1-mediated endocytosis. Enhanced KIM-1 expression by human kidney tubuloids increased uptake of virosomes. KIM-1 positive cells express less angiotensin-converting enzyme 2 (ACE2), the well-known receptor for SARS-CoV-2. Using microscale thermophoresis, the EC50 for KIM-1-SARS-CoV-2 spike protein, and receptor binding domain (RBD) interactions, were 19 and 10 nM respectively. Thus KIM-1 is an alternative receptor to ACE2 for SARS-CoV-2. KIM-1 targeted therapeutics may prevent and/or treat COVID-19.


1988 ◽  
Vol 254 (5) ◽  
pp. F747-F753
Author(s):  
M. M. Walsh-Reitz ◽  
R. I. Feldman ◽  
F. G. Toback

Cultures that achieved a higher cell density than expected were noted during study of growth regulation in monkey kidney epithelial cells of the BSC-1 line. Multiplication of the variant cells was accelerated, compared with parental cells, as the cultures approached confluence. Cytogenetic analysis, immunofluorescence antibody reactions with specific monkey serum, isoenzyme analysis, microbiological studies, and lack of growth in soft agar indicated that the variant cells were not a contaminating cell type, lacked new isoenzymes, were free of microbial contamination, and were not transformed. Confluent variant cultures did not respond to a purified growth inhibitor protein produced by BSC-1 cells that inhibits multiplication and reduces cell Na content in subconfluent variant and parental cells. Vasopressin, which is a mitogen for parental cells, was a potent growth inhibitor for confluent cultures of variant cells. Low-K or high-Na media, which stimulate proliferation of parental cells, had no effect on growth of the variant cell line. These results suggest that enhanced multiplication of the variant cells is mediated by altered signal transduction pathways and/or receptors for growth-regulatory molecules.


2011 ◽  
Vol 36 (1) ◽  
pp. 127-129 ◽  
Author(s):  
Maki Tokumoto ◽  
Tomoaki Ohtsu ◽  
Akiko Honda ◽  
Yasuyuki Fujiwara ◽  
Hisamitsu Nagase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document