scholarly journals Protein kinase‐D1 overexpression in mice prevents lipid‐induced insulin resistance and cardiomyopathy by upregulation of glucose uptake

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Ellen Dirkx ◽  
Robert W. Schwenk ◽  
Laura KM Steinbusch ◽  
Nicole Hoebers ◽  
Ben J Janssen ◽  
...  
2008 ◽  
Vol 93 (7) ◽  
pp. 2900-2903 ◽  
Author(s):  
Maarten R. Soeters ◽  
Hans P. Sauerwein ◽  
Peter F. Dubbelhuis ◽  
Johanna E. Groener ◽  
Mariëtte T. Ackermans ◽  
...  

Abstract Context: It has been demonstrated repeatedly that short-term fasting induces insulin resistance, although the exact mechanism in humans is unknown to date. Intramyocellular sphingolipids (i.e. ceramide) have been suggested to induce insulin resistance by interfering with the insulin signaling cascade in obesity. Objective: Our objective was to study peripheral insulin sensitivity together with muscle ceramide concentrations and protein kinase B/AKT phosphorylation after short-term fasting. Main Outcome Measures and Design: After 14- and 62-h fasting, glucose fluxes were measured before and after a hyperinsulinemic euglycemic clamp. Muscle biopsies were performed in the basal state and during the clamp to assess muscle ceramide and protein kinase B/AKT. Results: Insulin-mediated peripheral glucose uptake was significantly lower after 62-h fasting compared with 14-h fasting. Intramuscular ceramide concentrations tended to increase during fasting. During the clamp the phosphorylation of protein kinase B/AKT at serine473 in proportion to the total amount of protein kinase B/AKT was significantly lower. Muscle ceramide did not correlate with plasma free fatty acids. Conclusions: Fasting for 62 h decreases insulin-mediated peripheral glucose uptake with lower phosphorylation of AKT at serine473. AKT may play a regulatory role in fasting-induced insulin resistance. Whether the decrease in AKT can be attributed to the trend to higher muscle ceramide remains unanswered.


2011 ◽  
Vol 287 (8) ◽  
pp. 5871-5881 ◽  
Author(s):  
Ellen Dirkx ◽  
Robert W. Schwenk ◽  
Will A. Coumans ◽  
Nicole Hoebers ◽  
Yeliz Angin ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 241-251 ◽  
Author(s):  
Jennifer Jager ◽  
Thierry Grémeaux ◽  
Mireille Cormont ◽  
Yannick Le Marchand-Brustel ◽  
Jean-François Tanti

Inflammation is associated with obesity and insulin resistance. Proinflammatory cytokines produced by adipose tissue in obesity could alter insulin signaling and action. Recent studies have shown a relationship between IL-1β level and metabolic syndrome or type 2 diabetes. However, the ability of IL-1β to alter insulin signaling and action remains to be explored. We demonstrated that IL-1β slightly increased Glut 1 translocation and basal glucose uptake in 3T3-L1 adipocytes. Importantly, we found that prolonged IL-1β treatment reduced the insulin-induced glucose uptake, whereas an acute treatment had no effect. Chronic treatment with IL-1β slightly decreased the expression of Glut 4 and markedly inhibited its translocation to the plasma membrane in response to insulin. This inhibitory effect was due to a decrease in the amount of insulin receptor substrate (IRS)-1 but not IRS-2 expression in both 3T3-L1 and human adipocytes. The decrease in IRS-1 amount resulted in a reduction in its tyrosine phosphorylation and the alteration of insulin-induced protein kinase B activation and AS160 phosphorylation. Pharmacological inhibition of ERK totally inhibited IL-1β-induced down-regulation of IRS-1 mRNA. Moreover, IRS-1 protein expression and insulin-induced protein kinase B activation, AS160 phosphorylation, and Glut 4 translocation were partially recovered after treatment with the ERK inhibitor. These results demonstrate that IL-1β reduces IRS-1 expression at a transcriptional level through a mechanism that is ERK dependent and at a posttranscriptional level independently of ERK activation. By targeting IRS-1, IL-1β is capable of impairing insulin signaling and action, and could thus participate in concert with other cytokines, in the development of insulin resistance in adipocytes.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Caiping Lu ◽  
Hanying Xing ◽  
Linquan Yang ◽  
Kaiting Chen ◽  
Linyi Shu ◽  
...  

Diabetes mellitus is highly prevalent worldwide. High-fat-diet (HFD) consumption can lead to liver fat accumulation, impair hepatic glycometabolism, and cause insulin resistance and the development of diabetes. Resveratrol has been shown to improve the blood glucose concentration of diabetic mice, but its effect on the abnormal hepatic glycometabolism induced by HFD-feeding and the mechanism involved are unknown. In this study, we determined the effects of resveratrol on the insulin resistance of high-fat-diet-fed mice and a hepatocyte model by measuring serum biochemical indexes, key indicators of glycometabolism, glucose uptake, and glycogen synthesis in hepatocytes. We found that resveratrol treatment significantly ameliorated the HFD-induced abnormalities in glucose metabolism in mice, increased glucose absorption and glycogen synthesis, downregulated protein phosphatase 2A (PP2A) and activated Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ), and increased the phosphorylation of AMP-activated protein kinase (AMPK). In insulin-resistant HepG2 cells, the administration of a PP2A activator or CaMKKβ inhibitor attenuated the effects of resveratrol, but the administration of an AMPK inhibitor abolished the effects of resveratrol. Resveratrol significantly ameliorates abnormalities in glycometabolism induced by HFD-feeding and increases glucose uptake and glycogen synthesis in hepatocytes. These effects are mediated through the activation of AMPK by PP2A and CaMKKβ.


Author(s):  
A. Sun ◽  
O. Simsek Papur ◽  
E. Dirkx ◽  
L. Wong ◽  
T. Sips ◽  
...  

Abstract In the diabetic heart, long-chain fatty acid (LCFA) uptake is increased at the expense of glucose uptake. This metabolic shift ultimately leads to insulin resistance and a reduced cardiac function. Therefore, signaling kinases that mediate glucose uptake without simultaneously stimulating LCFA uptake could be considered attractive anti-diabetic targets. Phosphatidylinositol-4-kinase-IIIβ (PI4KIIIβ) is a lipid kinase downstream of protein kinase D1 (PKD1) that mediates Golgi-to-plasma membrane vesicular trafficking in HeLa-cells. In this study, we evaluated whether PI4KIIIβ is involved in myocellular GLUT4 translocation induced by contraction or oligomycin (an F1F0-ATP synthase inhibitor that activates contraction-like signaling). Pharmacological targeting, with compound MI14, or genetic silencing of PI4KIIIβ inhibited contraction/oligomycin-stimulated GLUT4 translocation and glucose uptake in cardiomyocytes but did not affect CD36 translocation nor LCFA uptake. Addition of the PI4KIIIβ enzymatic reaction product phosphatidylinositol-4-phosphate restored oligomycin-stimulated glucose uptake in the presence of MI14. PI4KIIIβ activation by PKD1 involves Ser294 phosphorylation and altered its localization with unchanged enzymatic activity. Adenoviral PI4KIIIβ overexpression stimulated glucose uptake, but did not activate hypertrophic signaling, indicating that unlike PKD1, PI4KIIIβ is selectively involved in GLUT4 translocation. Finally, PI4KIIIβ overexpression prevented insulin resistance and contractile dysfunction in lipid-overexposed cardiomyocytes. Together, our studies identify PI4KIIIβ as positive and selective regulator of GLUT4 translocation in response to contraction-like signaling, suggesting PI4KIIIβ as a promising target to rescue defective glucose uptake in diabetics.


2014 ◽  
Vol 76 ◽  
pp. 208-217 ◽  
Author(s):  
Ellen Dirkx ◽  
Guillaume J.J.M. van Eys ◽  
Robert W. Schwenk ◽  
Laura K.M. Steinbusch ◽  
Nicole Hoebers ◽  
...  

2002 ◽  
pp. 419-429 ◽  
Author(s):  
J Buren ◽  
HX Liu ◽  
J Jensen ◽  
JW Eriksson

OBJECTIVE: Glucocorticoid excess leads to insulin resistance. This study explores the effects of glucocorticoids on the glucose transport system and insulin signalling in rat adipocytes. The interaction between glucocorticoids and high levels of insulin and glucose is also addressed. DESIGN AND METHODS: Isolated rat adipocytes were cultured for 24 h at different glucose concentrations (5 and 15 mmol/l) with or without the glucocorticoid analogue dexamethasone (0.3 micromol/l) and insulin (10(4) microU/ml). After the culture period, the cells were washed and then basal and insulin-stimulated glucose uptake, insulin binding and lipolysis as well as cellular content of insulin signalling proteins (insulin receptor substrate-1 (IRS-1), IRS-2, phosphatidylinositol 3-kinase (PI3-K) and protein kinase B (PKB)) and glucose transporter isoform GLUT4 were measured. RESULTS: Dexamethasone in the medium markedly decreased both basal and insulin-stimulated glucose uptake at both 5 and 15 mmol/l glucose (by approximately 40-50%, P<0.001 and P<0.05 respectively). Combined long-term treatment with insulin and dexamethasone exerted additive effects in decreasing basal, and to a lesser extent insulin-stimulated, glucose uptake capacity (P<0.05) compared with dexamethasone alone, but this was seen only at high glucose (15 mmol/l). Insulin binding was decreased (by approximately 40%, P<0.05) in dexamethasone-treated cells independently of surrounding glucose concentration. Following dexamethasone treatment a approximately 75% decrease (P<0.001) in IRS-1 expression and an increase in IRS-2 (by approximately 150%, P<0.001) was shown. Dexamethasone also induced a subtle decrease in PI3-K (by approximately 20%, P<0.01) and a substantial decrease in PKB content (by approximately 45%, P<0.001). Insulin-stimulated PKB phosphorylation was decreased (by approximately 40%, P<0.01) in dexamethasone-treated cells. Dexamethasone did not alter the amount of total cellular membrane-associated GLUT4 protein. The effects of dexamethasone per se on glucose transport and insulin signalling proteins were mainly unaffected by the surrounding glucose and insulin levels. Dexamethasone increased the basal lipolytic rate (approximately 4-fold, P<0.05), but did not alter the antilipolytic effect of insulin. CONCLUSIONS: These results suggest that glucocorticoids, independently of the surrounding glucose and insulin concentration, impair glucose transport capacity in fat cells. This is not due to alterations in GLUT4 abundance. Instead dexamethasone-induced insulin resistance may be mediated via reduced cellular content of IRS-1 and PKB accompanied by a parallel reduction in insulin-stimulated activation of PKB.


2001 ◽  
Vol 280 (2) ◽  
pp. E229-E237 ◽  
Author(s):  
Eulàlia Montell ◽  
Marco Turini ◽  
Mario Marotta ◽  
Matthew Roberts ◽  
Véronique Noé ◽  
...  

The increased availability of saturated lipids has been correlated with development of insulin resistance, although the basis for this impairment is not defined. This work examined the interaction of saturated and unsaturated fatty acids (FA) with insulin stimulation of glucose uptake and its relation to the FA incorporation into different lipid pools in cultured human muscle. It is shown that basal or insulin-stimulated 2-deoxyglucose uptake was unaltered in cells preincubated with oleate, whereas basal glucose uptake was increased and insulin response was impaired in palmitate- and stearate-loaded cells. Analysis of the incorporation of FA into different lipid pools showed that palmitate, stearate, and oleate were similarly incorporated into phospholipids (PL) and did not modify the FA profile. In contrast, differences were observed in the total incorporation of FA into triacylglycerides (TAG): unsaturated FA were readily diverted toward TAG, whereas saturated FA could accumulate as diacylglycerol (DAG). Treatment with palmitate increased the activity of membrane-associated protein kinase C, whereas oleate had no effect. Mixture of palmitate with oleate diverted the saturated FA toward TAG and abolished its effect on glucose uptake. In conclusion, our data indicate that saturated FA-promoted changes in basal glucose uptake and insulin response were not correlated to a modification of the FA profile in PL or TAG accumulation. In contrast, these changes were related to saturated FA being accumulated as DAG and activating protein kinase C. Therefore, our results suggest that accumulation of DAG may be a molecular link between an increased availability of saturated FA and the induction of insulin resistance.


2019 ◽  
Author(s):  
Dana Goldbraikh ◽  
Danielle Neufeld ◽  
Yara Mutlak-Eid ◽  
Inbal Lasry ◽  
Anna Parnis ◽  
...  

ABSTRACTPI3K-Akt-FoxO-mTOR signaling is the central pathway controlling growth and metabolism in all cells. Activation of this pathway requires ubiquitination of Akt prior to its activation by phosphorylation. Here, we found that the deubiquitinating (DUB) enzyme USP1 removes K63-linked polyubiquitin chains on Akt to sustain PI3K-Akt-FoxO signaling low during prolonged starvation. DUB screening platform identified USP1 as a direct DUB for Akt, and USP1 depletion in atrophying muscle increased Akt ubiquitination, PI3K-Akt-FoxO signaling, and glucose uptake during fasting. Co-immunoprecipitation and mass spectrometry identified Disabled-2 (Dab2) and the tuberous sclerosis complex TSC1/TSC2 as USP1 bound proteins. During starvation, Dab2 was essential for Akt recruitment to USP1/UAF1 complex, and for PI3K-Akt-FoxO inhibition. Additionally, to maintain its own protein levels high, USP1 limits TSC1 levels to sustain mTOR-mediated basal protein synthesis rates. This USP1-mediated suppression of PI3K-Akt-FoxO signaling probably contributes to insulin resistance in catabolic diseases and perhaps to malignancies seen with USP1 mutations.


Sign in / Sign up

Export Citation Format

Share Document