scholarly journals Role of L‐type voltage dependent calcium and large conductance potassium channels in adenosine A 1 receptor mediated vasoconstriction through Cyp4a

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Swati S Kunduri ◽  
Mohammed A Nayeem ◽  
Dovenia S Ponnoth ◽  
Stephen Tilley ◽  
S. Jamal Mustafa
2008 ◽  
Vol 591 (1-3) ◽  
pp. 171-176 ◽  
Author(s):  
Praveen K. Gupta ◽  
Jaganathan Subramani ◽  
Marie Dennis Marcus Leo ◽  
Anurag S. Sikarwar ◽  
Subhashree Parida ◽  
...  

1984 ◽  
Vol 220 (1221) ◽  
pp. 415-422 ◽  

A theoretical analysis of the passive electrical properties of normal myelinated nerve suggests that the function of the voltage-dependent potassium channels in the internodal axolemma under the myelin sheath is to permit the generation of an internodal resting potential. Calculation shows that if this internodal potential were not present, the nodal potential would be reduced (by electrotonic short-circuiting) thus impairing the security of conduction. This impairment is particularly pronounced with smaller diameter fibres.


Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.


1988 ◽  
Vol 255 (4) ◽  
pp. E469-E474
Author(s):  
J. P. Kile ◽  
M. S. Amoss

It has been proposed that gonadotropin-releasing hormone (GnRH) stimulates Ca2+ entry by activation of voltage-independent, receptor-mediated Ca2+ channels in the rat gonadotroph. Little work has been done on the role of calcium in GnRH-induced luteinizing hormone (LH) release in species other than the rat. Therefore, this study was done to compare the effects of agents that alter Ca2+ or Na+ entry on LH release from calf anterior pituitary primary cells in culture. GnRH (100 ng/ml), Ca2+ ionophore A23187 (2.5 microM), and the depolarizing agent ouabain (0.1-10 microM) all produced significant increases (P less than 0.05) in LH release; these effects were significantly reduced when the cells were preincubated with the organic Ca2+ channel blockers nifedipine (1-10 microM) and verapamil (1-10 microM) and with Co2+ (0.01-1 mM). The effect of ouabain was inhibited by tetrodotoxin (TTX; 1-10 nM) as well as by nifedipine at 0.1-10 microM. In contrast to its effect on rat pituitary LH release, TTX significantly inhibited GnRH-stimulated LH release at 1-100 nM. These results suggest that GnRH-induced LH release may employ Ca2+ as a second messenger in bovine gonadotrophs and support recent speculation that GnRH-induced Ca2+ mobilization may in part be voltage dependent.


Sign in / Sign up

Export Citation Format

Share Document