scholarly journals Short‐term sustained hypoxia affects synaptic transmission in the nucleus tractus solitarius neurons of juvenile rats

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Daniela Accorsi‐Mendonça ◽  
Carlos E.L. Almado ◽  
Benedito H. Machado
1997 ◽  
Vol 78 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Stefan Titz ◽  
Bernhard U. Keller

Titz, Stefan and Bernhard U. Keller. Rapidly deactivating AMPA receptors determine excitatory synaptic transmission to interneurons in the nucleus tractus solitarius from rat. J. Neurophysiol. 78: 82–91, 1997. Excitatory synaptic transmission was investigated in interneurons of the parvocellular nucleus tractus solitarius (pNTS) by performing patch-clamp experiments in thin slice preparations from rat brain stem. Stimulation of single afferent fibers evoked excitatory postsynaptic currents (EPSCs) mediated by glutamate receptors of the dl-α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and N-methyl-d-aspartate types. AMPA-receptor-mediated EPSCs displayed decay time constants of 3.5 ± 1.2 (SD) ms (13 cells), which were slow compared with EPSC decay time constants in neurons of the cerebellum or hippocampus. Slow EPSC decay was not explained by dendritic filtering, because the passive membrane properties of pNTS interneurons provided favorable voltage-clamp conditions. Also, the slowness of EPSC decay did not result from slow deactivation of AMPA receptors (0.7 ± 0.2 ms, 5 cells), which was investigated during rapid application of agonist to outside-out patches. Comparison of AMPA receptor kinetics with EPSC decay time constants suggested that the slow time course of EPSCs resulted from the prolonged presence of glutamate in the synaptic cleft.


2006 ◽  
Vol 95 (5) ◽  
pp. 2962-2974 ◽  
Author(s):  
Ghada S. Mahmoud ◽  
Lawrence M. Grover

The hippocampus produces growth hormone (GH) and contains GH receptors, suggesting a potential role for GH signaling in the regulation of hippocampal function. In agreement with this possibility, previous investigations have found altered hippocampal function and hippocampal-dependent learning and memory after chronic GH administration or deficiency. In this study we applied GH to in vitro rat hippocampal brain slices, to determine whether GH has short-term effects on hippocampal function in addition to previously documented chronic effects. We found that GH enhanced both AMPA- and NMDA-receptor–mediated excitatory postsynaptic potentials (EPSPs) in hippocampal area CA1, but did not alter GABAA-receptor–mediated inhibitory synaptic transmission. GH enhancement of excitatory synaptic transmission was gradual, requiring 60–70 min to reach maximum, and occurred without any change in paired-pulse facilitation, suggesting a possible postsynaptic site of action. In CA1 pyramidal neurons, GH enhancement of EPSPs was correlated with significant hyperpolarization and decreased input resistance. GH enhancement of EPSPs required Janus kinase 2 (JAK2), phosphatidylinositol-3 (PI3) kinase, mitogen-activated protein (MAP) kinase kinase (MEK), and synthesis of new proteins. Although PI3 kinase and MEK were required for initiation of GH effects on excitatory synaptic transmission, they were not required for maintained enhancement of EPSPs. GH treatment and tetanus-induced long-term potentiation were mutually occluding, suggesting a common mechanism or mechanisms in both forms of synaptic enhancement. Our results demonstrate that GH has powerful short-term effects on hippocampal function, and extend the timescale for potential roles of GH in regulating hippocampal function and hippocampal-dependent behaviors.


Neuron ◽  
2009 ◽  
Vol 62 (4) ◽  
pp. 539-554 ◽  
Author(s):  
Bin Pan ◽  
Robert S. Zucker

2020 ◽  
Vol 7 ◽  
Author(s):  
Jennifer Chow ◽  
Andrew J. Thompson ◽  
Fahad Iqbal ◽  
Wali Zaidi ◽  
Naweed I. Syed

The incidence of depression among humans is growing worldwide, and so is the use of selective serotonin reuptake inhibitors (SSRIs), such as sertraline hydrochloride. Our fundamental understanding regarding the mechanisms by which these antidepressants function and their off-target synaptic effects remain poorly defined, owing to the complexity of the mammalian brain. As all brain functions rely on proper synaptic connections between neurons, we examined the effect of sertraline on synaptic transmission, short-term potentiation underlying synaptic plasticity and synapse formation using identified neurons from the mollusk Lymnaea stagnalis. Through direct electrophysiological recordings, made from soma-soma paired neurons, we demonstrate that whereas sertraline does not affect short-term potentiation, it reduces the efficacy of synaptic transmission at both established and newly formed cholinergic synapses between identified neurons. Furthermore, Lymnaea neurons cultured in the presence of sertraline exhibited a decreased incidence of synaptogenesis. Our study provides the first direct functional evidence that sertraline exerts non-specific effects—outside of its SSRI role—when examined at the resolution of single pre- and post-synaptic neurons.


Sign in / Sign up

Export Citation Format

Share Document