scholarly journals Claudin‐5 increases alveolar permeability in alcoholic lung syndrome by destabilizing claudin‐18/zonula occludens‐1 interactions (716.4)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Barbara Schlingmann ◽  
Christina Ward ◽  
Samuel Molina ◽  
Christian Overgaard ◽  
David Guidot ◽  
...  
Author(s):  
Keisuke Imafuku ◽  
Mayumi Kamaguchi ◽  
Ken Natsuga ◽  
Hideki Nakamura ◽  
Hiroshi Shimizu ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii164-ii164
Author(s):  
Rianne Haumann ◽  
Fatma El-Khouly ◽  
Marjolein Breur ◽  
Sophie Veldhuijzen van Zanten ◽  
Gertjan Kaspers ◽  
...  

Abstract INTRODUCTION Chemotherapy has been unsuccessful for pediatric diffuse midline glioma (DMG) most likely due to an intact blood-brain barrier (BBB). However, the BBB has not been characterized in DMG and therefore its implications for drug delivery are unknown. In this study we characterized the BBB in DMG patients and compared this to healthy controls. METHODS End-stage DMG pontine samples (n=5) were obtained from the VUmc diffuse intrinsic pontine glioma (DIPG) autopsy study and age-matched healthy pontine samples (n=22) were obtained from the NIH NeuroBioBank. Tissues were stained for BBB markers claudin-5, zonula occludens-1, laminin, and PDGFRβ. Claudin-5 stains were used to determine vascular density and diameter. RESULTS In DMG, expression of claudin-5 was reduced and dislocated to the abluminal side of endothelial cells. In addition, the expression of zonula occludens-1 was reduced. The basement membrane protein laminin expression was reduced at the glia limitans in both pre-existent vessels and neovascular proliferation. PDGFRβ expression was not observed in DMG but was present in healthy pons. Furthermore, the number of blood vessels in DMG was significantly (P< 0.01) reduced (13.9 ± 11.8/mm2) compared to healthy pons (26.3 ± 14.2/mm2). Markedly, the number of small blood vessels (< 10µm) was significantly lower (P< 0.01) while larger blood vessels (> 10µm) were not significantly different (P= 0.223). The mean vascular diameter was larger for DMG 9.3 ± 9.9µm compared to 7.7 ± 9.0µm for healthy pons (P= 0.016). CONCLUSION Both the BBB and the vasculature are altered at end-stage DMG. The reduced vascular density might have implications for several drug delivery methods such as focused ultrasound and convection enhanced delivery that are being explored for the treatment of DMG. The functional effects of the structurally altered BBB remain unknown and further research is needed to evaluate the BBB integrity at end-stage DMG


2015 ◽  
Vol 56 (2) ◽  
pp. 426 ◽  
Author(s):  
Se Jin Park ◽  
Moin A. Saleem ◽  
Ja-Ae Nam ◽  
Tae-Sun Ha ◽  
Jae Il Shin

2014 ◽  
Vol 127 (5) ◽  
pp. 1104-1116 ◽  
Author(s):  
A. E. Zemljic-Harpf ◽  
J. C. Godoy ◽  
O. Platoshyn ◽  
E. K. Asfaw ◽  
A. R. Busija ◽  
...  

2021 ◽  
Author(s):  
Yuya Tsurudome ◽  
Nao Morita ◽  
Michiko Horiguchi ◽  
Kentaro Ushijima

Abstract Diabetes patients are at a high risk of developing complications related to angiopathy and disruption of the signal transduction system. The liver is one of the multiple organs damaged during diabetes. Few studies have evaluated the morphological effects of adhesion factors in diabetic liver. The influence of diurnal variation has been observed in the expression and functioning of adhesion molecules to maintain tissue homeostasis associated with nutrient uptake. The present study demonstrated that the rhythm-influenced functioning of tight junction was impaired in the liver of ob/ob mice. The tight junctions of hepatocytes were loosened during the dark period in normal mice compared to those in ob/ob mice, where the hepatocyte gaps remained open throughout the day. The time-dependent expression of zonula occludens 1 (ZO1) in the liver plays a vital role in the functioning of the tight junction. The time-dependent expression of ZO1 was nullified and its expression was attenuated in the liver of ob/ob mice. ZO1 expression was inhibited at the mRNA and protein levels. The expression rhythm of ZO1 was found to be regulated by heat shock factor (HSF)1/2, the expression of which was reduced in the liver of ob/ob mice. The DNA-binding ability of HSF1/2 was decreased in the liver of ob/ob mice compared to that in normal mice. These findings suggest the involvement of impaired expression and functioning of adhesion factors in diabetic liver complications.


2012 ◽  
Vol 23 (22) ◽  
pp. 4465-4471 ◽  
Author(s):  
R. F. Andrew McKinley ◽  
Tony J. C. Harris

Polarity landmarks guide epithelial development. In the early Drosophila ectoderm, the scaffold protein Bazooka (Drosophila PAR-3) forms apicolateral landmarks to direct adherens junction assembly. However, it is unclear how Bazooka becomes polarized. We report two mechanisms acting in concert to displace Bazooka from the basolateral membrane. As cells form during cellularization, basally localized Bazooka undergoes basal-to-apical transport. Bazooka requires its three postsynaptic density 95, discs large, zonula occludens-1 (PDZ) domains to engage the transport mechanism, but with the PDZ domains deleted, basolateral displacement still occurs by gastrulation. Basolateral PAR-1 activity appears to act redundantly with the transport mechanism. Knockdown of PAR-1 sporadically destabilizes cellularization furrows, but basolateral displacement of Bazooka still occurs by gastrulation. In contrast, basolateral Bazooka displacement is blocked with disruption of both the transport mechanism and phosphorylation by PAR-1. Thus Bazooka is polarized through a combination of transport and PAR-1–induced dispersion from basolateral membranes. Our work complements recent findings in Caenorhabditis elegans and thus suggests the coupling of transport and dispersion is a common protein polarization strategy.


Sign in / Sign up

Export Citation Format

Share Document