scholarly journals Effect of Chronic Hypoxia on the Carotid Body Glomus Cell Mitochondrial Response to Acute Hypoxia

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Insook Kim ◽  
John Carroll
Cell ◽  
2014 ◽  
Vol 156 (1-2) ◽  
pp. 291-303 ◽  
Author(s):  
Aida Platero-Luengo ◽  
Susana González-Granero ◽  
Rocío Durán ◽  
Blanca Díaz-Castro ◽  
José I. Piruat ◽  
...  

2002 ◽  
Vol 282 (6) ◽  
pp. L1314-L1323 ◽  
Author(s):  
J. Chen ◽  
L. He ◽  
B. Dinger ◽  
L. Stensaas ◽  
S. Fidone

Chronic exposure in a low-Po 2 environment (i.e., chronic hypoxia, CH) elicits an elevated hypoxic ventilatory response and increased hypoxic chemosensitivity in arterial chemoreceptors in the carotid body. In the present study, we examine the hypothesis that changes in chemosensitivity are mediated by endothelin (ET), a 21-amino-acid peptide, and ETA receptors, both of which are normally expressed by O2-sensitive type I cells. Immunocytochemical staining showed incremental increases in ET and ETAexpression in type I cells after 3, 7, and 14 days of CH (380 Torr). Peptide and receptor upregulation was confirmed in quantitative RT-PCR assays conducted after 14 days of CH. In vitro recordings of carotid sinus nerve activity after in vivo exposure to CH for 1–16 days demonstrated a time-dependent increase in chemoreceptor activity evoked by acute hypoxia. In normal carotid body, the specific ETAantagonist BQ-123 (5 μM) inhibited 11% of the nerve discharge elicited by hypoxia, and after 3 days of CH the drug diminished the hypoxia-evoked discharge by 20% ( P < 0.01). This inhibitory effect progressed to 45% at day 9 of CH and to nearly 50% after 12, 14, and 16 days of CH. Furthermore, in the presence of BQ-123, the magnitude of the activity evoked by hypoxia did not differ in normal vs. CH preparations, indicating that the increased activity was the result of endogenous ET acting on an increasing number of ETA. Collectively, our data suggest that ET and ETA autoreceptors on O2-sensitive type I cells play a critical role in CH-induced increased chemosensitivity in the rat carotid body.


1996 ◽  
Vol 76 (3) ◽  
pp. 1880-1886 ◽  
Author(s):  
S. C. Hempleman

1. Rat pups were gestated and born in normoxia (inspired O2 pressure 149 mmHg) or chronic hypoxia (insured O2 pressure 80 mmHg) to test whether chronic hypoxia alters carotid body glomus cell calcium currents. Carotid bodies were removed from 5- to 8-day-old-pups under halothane anesthesia, at which time blood hematocrits averaged 52 +/- 1% (mean +/- SE) in the chronically hypoxic pups and 36 +/- 1% in the normoxic pups (P < 0.05). Glomus cells were then enzymatically isolated from the carotid bodies, and calcium currents were recorded with whole cell patch clamp. 2. Compared with normoxic glomus cells (n = 29), chronically hypoxic glomus cells (n = 32) superfused with 10 mM CaCl2 had larger peak calcium current (146 +/- 16 pA vs. 49 +/- 7 pA, P < 0.05), larger peak calcium current density (12.0 +/- 1.1 pA/pF vs. 7.3 +/- 1.0 pA/pF, P < 0.05), and larger membrane capacitance (12.1 +/- 0.9 pF vs. 7.5 +/- 0.6 pF, P < 0.05). 3. Threshold for calcium current activation was approximately -40 mV. Currents showed little inactivation during 45-ms test pulses and were half-inactivated by a steady holding voltage of -11 +/- 2 mV (n = 15). Currents were reduced 43 +/- 13% by 50 microM nifedipine (n = 6, P < 0.05), and were augmented with barium as the charge carrier. These properties suggest that glomus cell calcium current is carried in part through L-type channels, and that is is relatively resistant to steady-state inactivation. 4. Augmented calcium influx through voltage-gated channels in glomus cells from chronically hypoxic neonatal rats may increase carotid body excitability through increased stimulus-secretion coupling. Overall, acclimatization to chronic hypoxia is known to depress acute hypoxic ventilatory reflex responses in neonates. The observations reported here suggest that inhibition of ventilatory reflexes by chronic hypoxia in neonates occurs centrally rather than peripherally.


1988 ◽  
Vol 64 (2) ◽  
pp. 666-671 ◽  
Author(s):  
E. B. Olson ◽  
E. H. Vidruk ◽  
J. A. Dempsey

We determined the effects of carotid body excision (CBX) on eupneic ventilation and the ventilatory responses to acute hypoxia, hyperoxia, and chronic hypoxia in unanesthetized rats. Arterial PCO2 (PaCO2) and calculated minute alveolar ventilation to minute metabolic CO2 production (VA/VCO2) ratio were used to determine the ventilatory responses. The effects of CBX and sham operation were compared with intact controls (PaCO2 = 40.0 +/- 0.1 Torr, mean +/- 95% confidence limits, and VA/VCO2 = 21.6 +/- 0.1). CBX rats showed 1) chronic hypoventilation with respiratory acidosis, which was maintained for at least 75 days after surgery (PaCO2 = 48.4 +/- 1.1 Torr and VA/VCO2 = 17.9 +/- 0.4), 2) hyperventilation in response to acute hyperoxia vs. hypoventilation in intact rats, 3) an attenuated increase in VA/VCO2 in acute hypoxemia (arterial PO2 approximately equal to 49 Torr), which was 31% of the 8.7 +/- 0.3 increase in VA/VCO2 observed in control rats, 4) no ventilatory acclimatization between 1 and 24 h hypoxia, whereas intact rats had a further 7.5 +/- 1.5 increase in VA/VCO2, 5) a decreased PaCO2 upon acute restoration of normoxia after 24 h hypoxia in contrast to an increased PaCO2 in controls. We conclude that in rats carotid body chemoreceptors are essential to maintain normal eupneic ventilation and to the process of ventilatory acclimatization to chronic hypoxia.


2005 ◽  
Vol 98 (2) ◽  
pp. 614-619 ◽  
Author(s):  
L. He ◽  
B. Dinger ◽  
S. Fidone

Current views suggest that oxygen sensing in the carotid body occurs in chemosensory type I cells, which excite synaptically apposed chemoafferent nerve terminals in the carotid sinus nerve (CSN). Prolonged exposure in a low-oxygen environment [i.e., chronic hypoxia (CH)] elicits an elevated stimulus-evoked discharge in chemoreceptor CSN fibers (i.e., increased chemosensitivity). In the present study, we evaluated cholinergic chemotransmission in the rat carotid body in an effort to test the hypothesis that CH enhances ACh-mediated synaptic activity between type I cells and chemoafferent nerve terminals. Animals were exposed in a hypobaric chamber (barometric pressure = 380 Torr) for 9–22 days before evaluation of chemoreceptor activity using an in vitro carotid body/CSN preparation. Nerve activity evoked by ACh was significantly larger ( P < 0.01) after CH, suggesting increased expression of cholinergic receptors. Approximately 80% of the CSN impulse activity elicited by ACh (100- or 1,000-μg bolus) in both normal and CH preparations was blocked by the specific nicotinic receptor antagonist mecamylamine (100 μM). CSN activity elicited by acute hypoxia or hypercapnia in normal preparations was likewise blocked (≥80%) in the presence of 100 μM mecamylamine, but after CH the enhanced CSN activity elicited by acute hypoxia or hypercapnia was not reduced in the presence of 100 or 500 μM mecamylamine. A muscarinic receptor antagonist, atropine (10 μM), and a specific nicotinic receptor α7 subunit antagonist, methyllycaconatine (50 nM), blocked ∼50% of the hypoxia-evoked activity in normal preparations but were ineffective after CH. Prolonged exposure to hypoxia appears to dramatically alter chemotransmission in the carotid body, and may induce alternative neurotransmitter mechanisms and/or electrical coupling between type I cells and chemoafferent nerve terminals.


2020 ◽  
Vol 275 ◽  
pp. 103400 ◽  
Author(s):  
Ryan W. Bavis ◽  
Monata J. Song ◽  
Julia P. Smachlo ◽  
Alexander Hulse ◽  
Holli R. Kenison ◽  
...  

2019 ◽  
Vol 13 (615) ◽  
pp. eaay9452 ◽  
Author(s):  
Alejandro Moreno-Domínguez ◽  
Patricia Ortega-Sáenz ◽  
Lin Gao ◽  
Olalla Colinas ◽  
Paula García-Flores ◽  
...  

Acute cardiorespiratory responses to O2 deficiency are essential for physiological homeostasis. The prototypical acute O2-sensing organ is the carotid body, which contains glomus cells expressing K+ channels whose inhibition by hypoxia leads to transmitter release and activation of nerve fibers terminating in the brainstem respiratory center. The mechanism by which changes in O2 tension modulate ion channels has remained elusive. Glomus cells express genes encoding HIF2α (Epas1) and atypical mitochondrial subunits at high levels, and mitochondrial NADH and reactive oxygen species (ROS) accumulation during hypoxia provides the signal that regulates ion channels. We report that inactivation of Epas1 in adult mice resulted in selective abolition of glomus cell responsiveness to acute hypoxia and the hypoxic ventilatory response. Epas1 deficiency led to the decreased expression of atypical mitochondrial subunits in the carotid body, and genetic deletion of Cox4i2 mimicked the defective hypoxic responses of Epas1-null mice. These findings provide a mechanistic explanation for the acute O2 regulation of breathing, reveal an unanticipated role of HIF2α, and link acute and chronic adaptive responses to hypoxia.


2016 ◽  
Vol 120 (10) ◽  
pp. 1186-1195 ◽  
Author(s):  
Barbara J. Morgan ◽  
Russell Adrian ◽  
Zun-yi Wang ◽  
Melissa L. Bates ◽  
John M. Dopp

We determined the effects of chronic exposure to intermittent hypoxia (CIH) on chemoreflex control of ventilation in conscious animals. Adult male Sprague-Dawley rats were exposed to CIH [nadir oxygen saturation (SpO2), 75%; 15 events/h; 10 h/day] or normoxia (NORM) for 21 days. We assessed the following responses to acute, graded hypoxia before and after exposures: ventilation (V̇e, via barometric plethysmography), V̇o2 and V̇co2 (analysis of expired air), heart rate (HR), and SpO2 (pulse oximetry via neck collar). We quantified hypoxia-induced chemoreceptor sensitivity by calculating the stimulus-response relationship between SpO2 and the ventilatory equivalent for V̇co2 (linear regression). An additional aim was to determine whether CIH causes proliferation of carotid body glomus cells (using bromodeoxyuridine). CIH exposure increased the slope of the V̇e/V̇co2/SpO2 relationship and caused hyperventilation in normoxia. Bromodeoxyuridine staining was comparable in CIH and NORM. Thus our CIH paradigm augmented hypoxic chemosensitivity without causing glomus cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document