Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial‐mesenchymal transition and anoikis resistance

2020 ◽  
Vol 34 (7) ◽  
pp. 9087-9101 ◽  
Author(s):  
Tao Li ◽  
Ying Yu ◽  
Yarong Song ◽  
Xuechao Li ◽  
Dongyang Lan ◽  
...  
Neoplasia ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1147-1165
Author(s):  
Zheng Wang ◽  
Mohit Hulsurkar ◽  
Lijuan Zhuo ◽  
Jinbang Xu ◽  
Han Yang ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1418 ◽  
Author(s):  
Di Zazzo ◽  
Galasso ◽  
Giovannelli ◽  
Di Donato ◽  
Bilancio ◽  
...  

Prostate cancer (PC) remains a widespread malignancy in men. Since the androgen/androgen receptor (AR) axis is associated with the pathogenesis of prostate cancer, suppression of AR-dependent signaling by androgen deprivation therapy (ADT) still represents the primary intervention for this disease. Despite the initial response, prostate cancer frequently develops resistance to ADT and progresses. As such, the disease becomes metastatic and few therapeutic options are available at this stage. Although the majority of studies are focused on the role of AR signaling, compelling evidence has shown that estrogens and their receptors control prostate cancer initiation and progression through a still debated mechanism. Epithelial versus mesenchymal transition (EMT) is involved in metastatic spread as well as drug-resistance of human cancers, and many studies on the role of this process in prostate cancer progression have been reported. We discuss here the findings on the role of estrogen/estrogen receptor (ER) axis in epithelial versus mesenchymal transition of prostate cancer cells. The pending questions concerning this issue are presented, together with the impact of the available data in clinical management of prostate cancer patients.


2020 ◽  
Author(s):  
Md Faqrul Hasan ◽  
Kavya Ganapathy ◽  
Jiao Sun ◽  
Khatib Ayman ◽  
Thomas Andl ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) play regulatory roles in cellular processes and their aberrant expression may drive cancer progression. Here we report the function of a lncRNA PAINT (Prostate Cancer Associated Intergenic Non-Coding Transcript) in promoting prostate cancer (PCa) progression. Upregulation of PAINT was noted in advanced stage and metastatic PCa. Inhibition of PAINT decreased cell proliferation, S-phase progression, increased expression of apoptotic markers, and improved sensitivity to docetaxel and Aurora kinase inhibitor VX-680. Inhibition of PAINT decreased cell migration and reduced expression of Slug and Vimentin. Ectopic expression of PAINT suppressed E-cadherin, increased S-phase progression and cell migration. PAINT expression in PCa cells induced larger colony formation and higher expression of mesenchymal markers. Transcriptome analysis followed by qRT-PCR validation showed differentially expressed genes involved in epithelial mesenchymal transition (EMT), apoptosis and drug resistance in PAINT-expressing cells. Our study establishes an oncogenic function of PAINT in PCa.


2011 ◽  
Vol 29 (7_suppl) ◽  
pp. 30-30
Author(s):  
W. Y. Kim ◽  
B. Zhou ◽  
G. Thomas

30 Background: The hypoxia-inducible factor (HIF) transcription factor has already cemented its oncogenic role in the development of renal cell carcinoma (RCC). However, its role in the tumorigenesis of other solid tumors remains unspecificed. Our studies focus on a novel link between HIF and prostate carcinogenesis. Methods: Using both in vitro cell culture studies as well as in vivo studies (orthotopic xenograft and genetically engineered mouse models) we investigate the role of HIF in prostate cancer cell proliferation, invasion, and progression. Results: Both HIF1 and HIF2 appear to be necessary for the proliferation and invasion of prostate cancer cell lines in vitro. Preliminary analysis of a PTEN deficient mouse model of prostate cancer suggests that expression of a stabilized form of HIF2 promotes the development of a larger prostate tumor burden and a more aggressive histology (high grade prostate intraepithelial neoplasia [PIN] at earlier stages). Moreover, PTEN-deficient prostate tumors producing HIF2 are more proliferative and vascular and express increased levels of genes associated with epithelial to mesenchymal transition (EMT). Conclusions: There has been much interest in the role of angiogenesis and hypoxia in prostate cancer progression. Our preliminary data suggest that HIF2 is able to promote PTEN-deficient prostate cancer progression in mice by increasing proliferation, angiogenesis, and EMT. No significant financial relationships to disclose.


Author(s):  
Samatha Bhat ◽  
Divya Adiga ◽  
Vaibhav Shukla ◽  
Kanive Parashiva Guruprasad ◽  
Shama Prasada Kabekkodu ◽  
...  

AbstractSenescence induction and epithelial-mesenchymal transition (EMT) events are the opposite sides of the spectrum of cancer phenotypes. The key molecules involved in these processes may get influenced or altered by genetic and epigenetic changes during tumor progression. Double C2-like domain beta (DOC2B), an intracellular vesicle trafficking protein of the double C2 protein family, plays a critical role in exocytosis, neurotransmitter release, and intracellular vesicle trafficking. DOC2B is repressed by DNA promoter hypermethylation and functions as a tumor growth regulator in cervical cancer. To date, the molecular mechanisms of DOC2B in cervical cancer progression and metastasis is elusive. Herein, the biological functions and molecular mechanisms regulated by DOC2B and its impact on senescence and EMT are described. DOC2B inhibition promotes proliferation, growth, and migration by relieving G0/G1-S arrest, actin remodeling, and anoikis resistance in Cal27 cells. It enhanced tumor growth and liver metastasis in nude mice with the concomitant increase in metastasis-associated CD55 and CD61 expression. Inhibition of EMT and promotion of senescence by DOC2B is a calcium-dependent process and accompanied by calcium-mediated interaction between DOC2B and CDH1. In addition, we have identified several EMT and senescence regulators as targets of DOC2B. We show that DOC2B may act as a metastatic suppressor by inhibiting EMT through induction of senescence via DOC2B-calcium-EMT-senescence axis. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document