Loss of interleukin‐10 receptor disrupts intestinal epithelial cell proliferation and skews differentiation towards the goblet cell fate

2021 ◽  
Vol 35 (6) ◽  
Author(s):  
Brittany R. Jenkins ◽  
Nathan A. Blaseg ◽  
Heather M. Grifka‐Walk ◽  
Benjamin Deuling ◽  
Steve D. Swain ◽  
...  
2015 ◽  
Vol 11 (8) ◽  
pp. e1005108 ◽  
Author(s):  
Kirk S. B. Bergstrom ◽  
Vijay Morampudi ◽  
Justin M. Chan ◽  
Ganive Bhinder ◽  
Jennifer Lau ◽  
...  

2015 ◽  
Vol 226 (3) ◽  
pp. 135-143 ◽  
Author(s):  
Tatiana Dorfman ◽  
Yulia Pollak ◽  
Rima Sohotnik ◽  
Arnold G Coran ◽  
Jacob Bejar ◽  
...  

The Wnt/β-catenin signaling cascade is implicated in the control of stem cell activity, cell proliferation, and cell survival of the gastrointestinal epithelium. Recent evidence indicates that the Wnt/β-catenin pathway is activated under diabetic conditions. The purpose of this study was to evaluate the role of Wnt/β-catenin signaling during diabetes-induced enteropathy in a rat model. Male rats were divided into three groups: control rats received injections of vehicle; diabetic rats received injections of one dose of streptozotocin (STZ); and diabetic–insulin rats received injections of STZ and were treated with insulin given subcutaneously at a dose of 1 U/kg twice daily. Rats were killed on day 7. Wnt/β-catenin-related genes and expression of proteins was determined using real-time PCR, western blotting, and immunohistochemistry. Among 13 genes identified by real-time PCR, seven genes were upregulated in diabetic rats compared with control animals including the target genes c-Myc and Tcf4. Diabetic rats also showed a significant increase in β-catenin protein compared with control animals. Treatment of diabetic rats attenuated the stimulating effect of diabetes on intestinal cell proliferation and Wnt/β-catenin signaling. In conclusion, enhanced intestinal epithelial cell proliferation in diabetic rats correlates with β-catenin accumulation.


1999 ◽  
Vol 80 (10) ◽  
pp. 1550-1557 ◽  
Author(s):  
C Booth ◽  
D F Hargreaves ◽  
J A Hadfield ◽  
A T McGown ◽  
C S Potten

2014 ◽  
Vol 81 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Alison J Morgan ◽  
Lisa G Riley ◽  
Paul A Sheehy ◽  
Peter C Wynn

Colostrum consists of a number of biologically active proteins and peptides that influence physiological function and development of a neonate. The present study investigated the biological activity of peptides released from first day bovine colostrum through in vitro and in vivo enzymatic digestion. This was assessed for proliferative activity using a human intestinal epithelial cell line, T84. Digestion of the protein fraction of bovine colostrum in vitro was conducted with the enzymes pepsin, chymosin and trypsin. Pepsin and chymosin digests yielded protein fractions with proliferative activity similar to that observed with undigested colostrum and the positive control foetal calf serum (FCS). In contrast trypsin digestion significantly (P<0·05) decreased colostral proliferative activity when co-cultured with cells when compared with undigested colostrum. The proliferative activity of undigested colostrum protein and abomasal whey protein digesta significantly increased (P<0·05) epithelial cell proliferation in comparison to a synthetic peptide mix. Bovine colostrum protein digested in vivo was collected from different regions of the gastrointestinal tract (GIT) in newborn calves fed either once (n=3 calves) or three times at 12-h intervals (n=3 calves). Digesta collected from the distal duodenum, jejunum and colon of calves fed once, significantly (P<0·05) stimulated cell proliferation in comparison with comparable samples collected from calves fed multiple times. These peptide enriched fractions are likely to yield candidate peptides with potential application for gastrointestinal repair in mammalian species.


Sign in / Sign up

Export Citation Format

Share Document