In Vitro Effects of Eltanolone on Rat Myocardium

1995 ◽  
Vol 83 (4) ◽  
pp. 792-798. ◽  
Author(s):  
Bruno Riou ◽  
Patrick Ruel ◽  
Jean-Luc Hanouz ◽  
Olivier Langeron ◽  
Yves Lecarpentier ◽  
...  

Background Eltanolone is a new short-acting intravenous induction agent. However, its effects on intrinsic myocardial contractility remain unknown. Methods The effects of eltanolone and its solvent (soya bean emulsion) on the intrinsic contractility of rat left ventricular papillary muscles were investigated in vitro (Krebs-Henseleit solution, 29 degrees C, pH 7.40, Ca2+ 0.5 mM, stimulation frequency 12 pulses/min). We studied contraction; relaxation; contraction-relaxation coupling under high and low loads; and postrest potentiation. Results Eltanolone (0.1, 0.3, 1, 3, and 10 micrograms.ml-1) induced no significant inotropic effect, as shown by the lack of changes in maximum unloaded shortening velocity and active isometric force. Eltanolone did not significantly modify the contraction-relaxation coupling under low load, suggesting that it did not modify calcium uptake by the sarcoplasmic reticulum. Eltanolone did not significantly modify the contraction-relaxation coupling under high load, suggesting that it did not modify calcium myofilament sensitivity. Eltanolone decreased the postrest potentiation in a concentration-dependent manner (from 150 +/- 14% to 118 +/- 9% at 10 micrograms.ml-1, P < 0.001), suggesting a decrease in the maximum capacity of calcium release by the sarcoplasmic reticulum, whereas its solvent did not. However, eltanolone did not slow postrest potentiation recovery, as shown by the absence of significant changes in the recovery slope, tau (4.5 +/- 1.4 vs. 3.8 +/- 1.0 beats; difference not statistically significant). Conclusions Eltanolone induced no significant inotropic effect on rat myocardium. It induced a decrease in the calcium release function of the sarcoplasmic reticulum, but this effect was not sufficiently important to modify the inotropic properties.

1997 ◽  
Vol 86 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Sylvia Fratea ◽  
Olivier Langeron ◽  
Yves Lecarpentier ◽  
Pierre Coriat ◽  
Bruno Riou

Background Dantrolene is the only known effective treatment for malignant hyperthermia. However, its effects on myocardial contraction and relaxation remain debatable. Methods The effects of dantrolene (10(-5)-10(-3) M) on the contractility of rat left ventricular papillary muscles were investigated in vitro (Krebs-Henseleit solution, 29 degrees C, pH 7.40, 2.5 and 0.5 mM Ca2+, stimulation frequency 12 pulses/min). The authors studied contraction, relaxation, contraction-relaxation coupling under high and low load, energetics, and postrest potentiation. The effects of dantrolene after depletion of catecholamine stores with reserpine also were studied. Results Dantrolene induced a moderate concentration-dependent negative inotropic effect at a low calcium concentration (active force at 10(-4) M: 86 +/- 14% of control values, P < 0.05), but not at a high calcium concentration. Dantrolene did not significantly modify the curvature of the force-velocity relation, suggesting that it did not modify myocardial energetics. Dantrolene induced no significant lusitropic effect under low load, suggesting that it did not modify calcium uptake by the sarcoplasmic reticulum. Dantrolene did not significantly modify postrest potentiation and postrest potentiation recovery, suggesting that it did not modify maximum capacity of calcium release by the sarcoplasmic reticulum nor its postrest resetting capacity. Reserpine did not modify the myocardial effects of dantrolene. Conclusions In rat myocardium, dantrolene did not modify any of the sarcoplasmic reticulum functions tested (uptake, release, postrest recovery). Dantrolene induced a moderate negative inotropic effect, probably mediated by a decrease in transarcolemmal calcium entry, and this negative inotropic effect was blunted by an increase in calcium concentration.


1995 ◽  
Vol 82 (2) ◽  
pp. 566-573 ◽  
Author(s):  
Bruno Riou ◽  
Marc Lejay ◽  
Yves Lecarpentier ◽  
Pierre Viars

Background Propofol is a short-acting intravenous induction agent that induces cardiovascular depression but without significant effect on intrinsic myocardial contractility in various species. However, its effects on diseased myocardium remain unknown. Methods The effects of propofol (1, 3, and 10 micrograms.ml-1) on the intrinsic contractility of left ventricular papillary muscles from normal hamsters and those with hypertrophic cardiomyopathy (strain BIO 14.6, aged 6 months) were investigated in vitro (Krebs-Henseleit solution, 29 degrees C, pH 7.40, Ca++ 2.5 mmol.l-1, stimulation frequency 3/min). Results Cardiac hypertrophy (143 +/- 13%, P < 0.001) was observed in cardiomyopathic hamsters. The contractility of papillary muscles from hamsters with cardiomyopathy was less than that of controls, as shown by the decrease in maximum shortening velocity (-29%, P < 0.03) and active isometric force (-51%, P < 0.001). Propofol did not induce any significant effect on contraction, relaxation, and contraction-relaxation coupling under low and high loads in normal hamsters. The effects of propofol were not significantly different between normal hamsters and those with cardiomyopathy. A slight but significant increase in maximum unloaded shortening velocity was observed in cardiomyopathic hamsters at 3 micrograms.ml-1 (4 +/- 6%, P < 0.05) and 10 micrograms.ml-1 (7 +/- 6%, P < 0.05). Conclusions Propofol did not modify intrinsic myocardial contractility in normal hamsters, and no significant differences were observed between normal and cardiomyopathic hamsters. These results may be useful because, unlike propofol, most anesthetics decrease myocardial contractility. Nevertheless, indirect cardiac effects of propofol may be more important than its direct cardiac effects in patients with impaired cardiac function.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Yves Lecarpentier ◽  
Nicolas Vignier ◽  
Patricia Oliviero ◽  
Miguel Cortes-Morichetti ◽  
Lucie Carrier ◽  
...  

The precise role of cardiac myosin binding protein C (cMyBP-C) on actomyosin interaction (AMI) remains unknown. We hypothesized that the lack of cMyBP-C impaired cardiac AMI. Experiments were performed on 16 weeks old cMyBP-C −/− (KO) and age-matched wild-type (WT) mice (n=20/group). In vitro mechanical and energetics properties were performed on left ventricular (LV) papillary muscles and Huxley’s equations were used to characterize AMI. In vitro motility assays were performed using myosin purified from LV. Myosin-based sliding velocities of actin filaments were analyzed at baseline, after pretreatment of the myosin solution with 10 umol of the catalytic subunit of PKA and/or in the presence of increasing amount of α-actinin, an actin-binding protein that acts as an internal load thereby providing an index of relative isometric force. Western-blot analysis was used to quantify cMyBP-C and phosphorylated cMyBP-C in myosin solutions. Compared to WT, both total tension and maximum shortening velocity were lower in KO (p<0.001). The probability for myosin to be weakly bound to actin was higher in KO than in WT (8.6±0.3 vs. 5.4±0.2%, p<0.05), whereas the number of strongly bound, high-force generated state cross-bridges was lower in KO (6.4±0.9 vs. 11.6±1.0 10 9 /mm 2 , p<0.001). The unitary force per AMI was lower in KO than in WT (p<0.01). At baseline, myosin-based velocities of actin were slower in KO than in WT (1.65±0.01 vs. 1.98±0.01 um/s, p<0.01). The minimum amount of α-actinin needed to completely arrest the thin filament motility was significantly higher in WT than in KO (73.3±1.1 vs 29.1±0.1 ug/l, p<0.001). As expected, cMyBP-C was present in WT myosin solution whereas cMyBP-C was not detected in KO. In WT, PKA induced a 1.6-fold increased in cMyBP-C phosphorylation (p<0.01) associated with a 53±1% increase in the amount of α-actinin required to arrest thin filament motility (p<0.001). PKA did not modify sliding velocity in WT. In KO, PKA had no effect on myosin sliding. We conclude that cMyBP-C regulates AMI by limiting inefficient cross-bridge formation and by enhancing the power stroke step. Phosphorylation status of cMyBP-C appears to play a critical role on cardiac contractility through a direct effect on the myosin molecular motor.


1998 ◽  
Vol 88 (3) ◽  
pp. 725-734 ◽  
Author(s):  
Makoto Tanaka ◽  
Tomohisa Ishikawa ◽  
Toshiaki Nishikawa ◽  
Katsutoshi Goto ◽  
Shigehito Sato

Background The present study was designed to determine whether augmentation of cardiac performance by milrinone is affected by acidosis in in vivo canine and in vitro guinea pig preparations, and to elucidate a mechanism in relation to the cyclic adenosine monophosphate (cAMP) formation. Methods Halothane-anesthetized, ventilated dogs were randomly assigned to a control group (arterial pH [pHa] approximately 7.4, base excess [BE] &gt; -2 mM; n = 7), mild acidosis group (pHa approximately 7.2, BE &lt; -9 mM; n = 7); or severe acidosis group (pHa &lt; 7, BE &lt; -20 mM; n = 6). Arterial blood pressure, left ventricular pressure (including maximum rate of increase, LV dP/dtmax), and pulmonary blood flow (PBF) were measured. Acidosis was induced by transient hypoxia and maintained with hydrogen chloride infusion. Hemodynamic responses to milrinone infusions at 2 and 5 microg x kg(-1) x min(-1) were then studied. In addition, left atria and right ventricular strips were dissected from guinea pig hearts and suspended in HEPES-Tyrode solution, with pH values adjusted to 7.4, 7, or 6.6. The concentration-response relation of isometric contractions for milrinone (10(-7) to 10(-4) M) and 8-bromo-cAMP (10(-4) to 10(-3) M) were determined. Results In the control group of dogs, significant increases in LV dP/dtmax (2,674 +/- 822 to 3,999 +/- 1,016 mmHg/s [means +/- SD]) and PBF (2.04 +/- 0.98 to 2.44 +/- 0.96 l/min [means +/- SD]) were seen with a milrinone infusion of 5 microg x kg(-1) x min(-1). In the mild acidosis group, 5 microg x kg(-1) x min(-1) milrinone also increased LV dP/dtmax and PBF. However, neither LV dP/dtmax nor PBF changed in the severe acidosis group. In in vitro experiments, milrinone exerted a positive inotropic effect in a concentration-dependent manner on the right ventricular preparations at pH 7.4, but not at pH 7 and 6.6, whereas no significant difference was observed in inotropic responses to 8-bromo-cAMP at pH values of 6.6, 7, and 7.4 on the right ventricular strips. In the right ventricular in vitro preparation, 10(-4) M milrinone was accompanied by a significant increase in intracellular cAMP content at apH of 7.4 but not 7. Conclusions These results indicate that the inotropic effect of milrinone is attenuated by acidosis due, at least in part, to decreased cAMP formation in acidotic muscle.


1997 ◽  
Vol 87 (6) ◽  
pp. 1406-1416 ◽  
Author(s):  
Benoit Vivien ◽  
Jean-Luc Hanouz ◽  
Pierre-Yves Gueugniaud ◽  
Yves Lecarpentier ◽  
Pierre Coriat ◽  
...  

Background The effects of halothane and isoflurane on myocardial contraction and relaxation in diseased myocardium are not completely understood. Methods The effects of equianesthetic concentrations of halothane and isoflurane on inotropy and lusitropy in left ventricular papillary muscles of healthy hamsters and those with genetically induced cardiomyopathy (strain BIO 14.6) were investigated in vitro (29 degrees C; pH 7.40; Ca2+ 2.5 mM; stimulation frequency, 3/min) in isotonic and isometric conditions. Results Halothane induced a negative inotropic effect that was greater in cardiomyopathic than in healthy hamsters (1.5 vol%, active isometric force (AF): 19 +/- 8% vs. 28 +/- 11% of control values; P &lt; 0.05). Isoflurane induced a negative inotropic effect that was greater in cardiomyopathic than in healthy hamsters (2.0 vol%, AF: 64 +/- 13% vs. 75 +/- 11% of control values; P &lt; 0.01). However, the negative inotropic effects of halothane and isoflurane were not different for cardiomyopathic or healthy hamsters when their concentrations were corrected for minimum alveolar concentration (MAC) values in each strain. Halothane induced a negative lusitropic effect under low load, which was more important in cardiomyopathic hamsters, suggesting a greater impairment in calcium uptake by the sarcoplasmic reticulum. In contrast, isoflurane induced a moderate positive lusitropic effect under low load in healthy but not in cardiomyopathic hamsters. Halothane and isoflurane induced no significant lusitropic effect under high load. Conclusions Halothane and isoflurane had greater negative inotropic effects in cardiomyopathic than in healthy hamsters. Nevertheless, no significant differences in their inotropic effects were noted when concentrations were correlated as a multiple of MAC in each strain.


1998 ◽  
Vol 89 (5) ◽  
pp. 1191-1198 ◽  
Author(s):  
Benoit Vivien ◽  
Jean-Luc Hanouz ◽  
Pierre-Yves Gueugniaud ◽  
Yves Lecarpentier ◽  
MD Pierre ◽  
...  

Background The effects of desflurane on myocardial contraction and relaxation in diseased myocardium have not been completely understood. Methods The effects of desflurane (1.8 to 9.4 vol%) in left ventricular papillary muscles of healthy hamsters and those with genetically induced cardiomyopathy (strain BIO 14.6) were investigated in vitro (29 degrees C, pH 7.40, Ca2+ 2.5 mM; stimulation frequency, 3/min) under low (isotony) and high (isometry) load. Data are mean percentages of baseline +/- SD. Results Desflurane induced no significant inotropic effect in healthy muscles (maximum unloaded shortening velocity and isometric active force at 9.4 vol%: 97 +/- 9% and 92 +/- 20%, respectively). In contrast, in cardiomyopathic muscles, desflurane induced a moderate negative inotropic effect (maximum unloaded shortening velocity and active force at 9.4 vol%: 84 +/- 19% and 75 +/- 25%, respectively). The negative inotropic effect was more pronounced than that in healthy muscles under low (P &lt; 0.05) but not high load, and even when concentrations were corrected for minimum alveolar concentrations in each strain. Adrenoceptor blockade or pretreatment with reserpine did not modify the inotropic effect of desflurane, suggesting the absence of intramyocardial catecholamine release. However, tyramine also did not induce any significant catecholamine release in hamster myocardium. In both strains, desflurane induced no significant lusitropic effect under low or high load. Conclusions Desflurane had no inotropic effect in healthy muscles and a moderate negative inotropic effect in cardiomyopathic muscles. The absence of desflurane-induced intramyocardial catecholamine release was related to hamster myocardium characteristics.


1999 ◽  
Vol 90 (6) ◽  
pp. 1663-1670. ◽  
Author(s):  
Pierre-Yves Gueugniaud ◽  
Jean-Luc Hanouz ◽  
Jean-Marc Martino ◽  
Yves Lecarpentier ◽  
Pierre Coriat ◽  
...  

Background Halogenated anesthetics potentiate the positive inotropic effects of alpha- and beta-adrenoceptor stimulations, but their interactions with dobutamine remain unknown. Methods The effects of halothane, isoflurane, sevoflurane, and desflurane (1 and 2 minimum alveolar concentration) on the inotropic responses induced by dobutamine (10(-8)-10(-4) M) were studied in rat left ventricular papillary muscles in vitro. Inotropic effects were studied under low (isotony) and high (isometry) loads. The authors also studied the lusitropic effects in isotonic (R1) and isometric (R2) conditions. Data are the mean percentage of baseline +/- SD. Results Dobutamine induced a positive inotropic effect (active isometric force: 185+/-36%, P &lt; 0.001) and a positive lusitropic effect under low load (R1: 78+/-9%, P &lt; 0.001), but not under high load (R2: 95+/-21%, not significant). Halothane, isoflurane, and sevoflurane did not modify the positive inotropic effect of dobutamine. Even in the presence of alpha-adrenoceptor blockade, isoflurane did not potentiate the positive inotropic effect of dobutamine. Desflurane significantly enhanced the positive inotropic effect of dobutamine (active isometric force: 239+/-35%, P &lt; 0.001), but this potentiation was abolished by pretreatment with reserpine. In contrast to halothane, isoflurane, sevoflurane, and desflurane did not significantly modify the lusitropic effects of dobutamine. Conclusions Halogenated anesthetics, except desflurane, did not modify the positive inotropic effects of dobutamine. Desflurane enhanced the positive inotropic effect of dobutamine, but this effect was related to the desflurane-induced release in intramyocardial catecholamine stores.


2005 ◽  
Vol 102 (6) ◽  
pp. 1101-1107 ◽  
Author(s):  
Hartmut Vatter ◽  
Michael Zimmermann ◽  
Veronika Tesanovic ◽  
Andreas Raabe ◽  
Lothar Schilling ◽  
...  

Object. The central role of endothelin (ET)—1 in the development of cerebral vasospasm after subarachnoid hemorrhage is indicated by the successful treatment of this vasospasm in several animal models by using selective ETA receptor antagonists. Clazosentan is a selective ETA receptor antagonist that provides for the first time clinical proof that ET-1 is involved in the pathogenesis of cerebral vasospasm. The aim of the present investigation was, therefore, to define the pharmacological properties of clazosentan that affect ETA receptor—mediated contraction in the cerebrovasculature. Methods. Isometric force measurements were performed in rat basilar artery (BA) ring segments with (E+) and without (E−) endothelial function. Concentration effect curves (CECs) were constructed by cumulative application of ET-1 or big ET-1 in the absence or presence of clazosentan (10−9, 10−8, and 10−7 M). The inhibitory potency of clazosentan was determined by the value of the affinity constant (pA2). The CECs for contraction induced by ET-1 and big ET-1 were shifted to the right in the presence of clazosentan in a parallel dose-dependent manner, which indicates competitive antagonism. The pA2 values for ET-1 were 7.8 (E+) and 8.6 (E−) and the corresponding values for big ET-1 were 8.6 (E+) and 8.3 (E−). Conclusions. The present data characterize clazosentan as a potent competitive antagonist of ETA receptor—mediated constriction of the cerebrovasculature by ET-1 and its precursor big ET-1. These functional data may also be used to define an in vitro profile of an ET receptor antagonist with a high probability of clinical efficacy.


1994 ◽  
Vol 266 (1) ◽  
pp. H68-H78 ◽  
Author(s):  
C. R. Cory ◽  
R. W. Grange ◽  
M. E. Houston

The loss of load-sensitive relaxation observed in the pressure-overloaded heart may reflect a strategy of slowed cytosolic Ca2+ uptake to yield a prolongation of the active state of the muscle and a decrease in cellular energy expenditure. A decrease in the potential of the sarcoplasmic reticulum (SR) to resequester cytosolic Ca2+ during diastole could contribute to this attenuated load sensitivity. To test this hypothesis, both in vitro mechanical function of anterior papillary muscles and the SR Ca2+ sequestration potential of female guinea pig left ventricle were compared in cardiac hypertrophy (Hyp) and sham-operated (Sham) groups. Twenty-one days of pressure overload induced by coarctation of the suprarenal, subdiaphragmatic aorta resulted in a 36% increase in left ventricular mass in the Hyp. Peak isometric tension, the rate of isometric tension development, and the maximal rates of isometric and isotonic relaxation were significantly reduced in Hyp. Load-sensitive relaxation were significantly reduced in Hyp. Load-sensitive relaxation quantified by the ratio of a rapid loading to unloading force step in isotonically contracting papillary muscle was reduced 50% in Hyp muscles. Maximum activity of SR Ca(2+)-adenosinetriphosphatase (ATPase) measured under optimal conditions (37 degrees C; saturating Ca2+) was unaltered, but at low free Ca2+ concentrations (0.65 microM), it was decreased by 43% of the Sham response. Bivariate regression analysis revealed a significant (r = 0.84; P = 0.009) relationship between the decrease in SR Ca(2+)-ATPase activity and the loss of load-sensitive relaxation after aortic coarctation. Stimulation of the SR Ca(2+)-ATPase by the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase resulted in a 2.6-fold increase for Sham but only a 1.6-fold increase for Hyp. Semiquantitative Western blot radioimmunoassays revealed that the changes in SR Ca(2+)-ATPase activity were not due to decreases in the content of the Ca(2+)-ATPase protein or phospholamban. Our data directly implicate a role for decreased SR function in attenuated load sensitivity. A purposeful downregulation of SR Ca2+ uptake likely results from a qualitative rather than a quantitative change in the ATPase and possibly one of its key regulators, phospholamban.


1989 ◽  
Vol 67 (9) ◽  
pp. 999-1006 ◽  
Author(s):  
Njanoor Narayanan ◽  
Philip Bedard ◽  
Trilochan S. Waraich

In the present study, the effects of the cytosolic Ca2+ transport inhibitor on ATP-dependent Ca2+ uptake by, and unidirectional passive Ca2+ release from, sarcoplassmic reticulum enriched membrane vesicles were examined in parallel experiments to determine whether inhibitor-mediated enhancement in Ca2+ efflux contributes to inhibition of net Ca2+ uptake. When assays were performed at pH 6.8 in the presence of oxalate, low concentrations (<100 μg/mL) of the inhibitor caused substantial inhibition of Ca2+ uptake by SR (28–50%). At this pH, low concentrations of the inhibitor did not cause enhancement of passive Ca2+ release from actively Ca2+-loaded sarcoplasmic reticulum. Under these conditions, high concentrations (>100 μg/mL) of the inhibitor caused stimulation of passive Ca2+ release but to a much lesser extent when compared with the extent of inhibition of active Ca2+ uptake (i.e., twofold greater inhibition of Ca2+ uptake than stimulation of Ca2+ release). When Ca2+ uptake and release assays were carried out at pH 7.4, the Ca2+ release promoting action of the inhibitor became more pronounced, such that the magnitude of enhancement in Ca2+ release at varying concentrations of the inhibitor (20–200 μg/mL) was not markedly different from the magnitude of inhibition of Ca2+ uptake. In the absence of oxalate in the assay medium, inhibition of Ca2+ uptake was observed at alkaline but not acidic pH. These findings imply that the inhibition of Ca2+ uptake observed at pH 6.8 is mainly due to decrease in the rate of active Ca2+ transport into the membrane vesicles rather than stimulation of passive Ca2+ efflux; at alkaline pH (pH 7.4), enhanced Ca2+ efflux contributes substantially, if not exclusively, to the decrease in Ca2+ uptake observed in the presence of the inhibitor. It is suggested that if the cytosolic inhibitor has actions similar to those observed in vitro in intact cardiac muscle, acid–base status of the intracellular fluid would be a major factor influencing the nature of its effects (inhibition of Ca2+ uptake or stimulation of Ca2+ release) on transmembrane Ca2+ fluxes across the sarcoplasmic reticulum.Key words: sarcoplasmic reticulum, Ca2+ uptake, Ca2+ release, endogenous inhibitor, heart muscle.


Sign in / Sign up

Export Citation Format

Share Document