A651 EFFECT OF INTRATHECAL (IT) NON-NMDA RECEPTOR ANTAGONISTS IN A RAT MODEL OF POSTOPERATIVE PAIN

1997 ◽  
Vol 87 (Supplement) ◽  
pp. 651A
Author(s):  
Peter K. Zahn ◽  
Eric F. Umali ◽  
Timothy J. Brennan
1998 ◽  
Vol 88 (1) ◽  
pp. 143-156 ◽  
Author(s):  
Peter K. Zahn ◽  
Timothy J. Brennan

Background Evidence from experiments by others indicates an important role for excitatory amino acids activating spinal n-methyl-d-aspartate (NMDA) receptors in models of persistent pain. The purpose of this study was to examine the effect of intrathecal (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine (MK-801), a noncompetitive NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (AP5), a competitive NMDA receptor antagonist, and N-G-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, on pain behaviors in a rat model of postoperative pain. Methods Rats with intrathecal catheters were anesthetized and underwent a plantar incision. Withdrawal threshold to punctate stimulation applied adjacent to the wound, response frequency to application of a nonpunctate stimulus applied directly to the wound, and nonevoked pain behaviors were measured before and after intrathecal administration of MK-801 or AP5. The effect of intrathecal L-NAME on mechanical hyperalgesia was also examined. Results Mechanical hyperalgesia increased and was persistent after plantar incision and was not decreased by intrathecal administration of 4, 14, or 40 nmol MK-801 or 10 nmol AP5. Only the greatest dose of AP5, 30 nmol, caused a small decrease in punctate and nonpunctate hyperalgesia. Intrathecal L-NAME had no effect. Neither intrathecal MK-801 nor intrathecal AP5 affected nonevoked pain behaviors. The greatest doses caused motor deficits. Conclusions Unlike intrathecal and systemic morphine, intrathecal NMDA receptor antagonists did not modify pain behaviors in this rat model of postoperative pain. These data suggest that NMDA receptors do not play an important role in the maintenance of postoperative pain behaviors and that NMDA receptor antagonists, administered spinally by themselves during the postoperative period, will not be useful for the treatment of postoperative pain in humans.


2014 ◽  
Vol 29 ◽  
pp. 1
Author(s):  
D. Srebro ◽  
S. Vuckovic ◽  
K. Savic Vujovic ◽  
B. Medic ◽  
R. Stojanovic ◽  
...  

2011 ◽  
Vol 115 (2) ◽  
pp. 398-407 ◽  
Author(s):  
Thorsten Frederik Holsträter ◽  
Michael Georgieff ◽  
Karl Josef Föhr ◽  
Werner Klingler ◽  
Miriam Elisabeth Uhl ◽  
...  

Background Both central sensitization after peripheral tissue injury and the development of opioid tolerance involve activation of N-methyl-D-aspartate (NMDA) receptors. At subanesthetic doses the NMDA receptor antagonist xenon suppresses pain-evoked sensitization of pain-processing areas in the central nervous system. Although numerous studies describe the effect of NMDA receptor antagonists on postoperative pain, clinical studies elucidating their intraoperative analgesic potency when applied in a low dosage are still largely missing. Methods To analyze the analgesic effect of low-dose xenon using new application methods, the authors tested nasally applied xenon as an add-on treatment for analgesia in 40 patients undergoing abdominal hysterectomy. Within a randomized double-blind placebo-controlled study design, intraoperative and postoperative requirement of opioids as well as postoperative subjective experiences of pain were measured as primary outcome variables. Results Intranasal application of xenon significantly reduced intraoperative opioid requirement (mean difference [MD] -2.0 μg/min; 95% CI [CI95]-0.53 to -3.51, Bonferroni correction adjusted P value [pcorr]= 0.028) without relevant side effects and significantly reduced postoperative pain (MD -1.34 points on an 11-point rating scale; CI95 -0.60 to -2.09, pcorr = 0.002). However, postoperative morphine consumption (MD -8.8 μg/min; CI95 1.2 to -18.8, pcorr = 0.24) was not significantly reduced in this study. Conclusions Low-dose xenon significantly reduces intraoperative analgesic use and postoperative pain perception. Because NMDA receptor antagonists suppress central sensitization, prevent the development of opioid tolerance, and reduce postoperative pain, the intraoperative usage of NMDA receptor antagonists such as xenon is suggested to improve effectiveness of pain management within a concept of multimodal analgesia.


2014 ◽  
Vol 3 ◽  
pp. 270-284 ◽  
Author(s):  
Dorota Makarewicz ◽  
Dorota Sulejczak ◽  
Małgorzata Duszczyk ◽  
Michał Małek ◽  
Marta Słomka ◽  
...  

2021 ◽  
pp. 019262332110077
Author(s):  
Catherine A. Picut ◽  
Odete R. Mendes ◽  
David S. Weil ◽  
Sarah Davis ◽  
Cynthia Swanson

Administration of pediatric anesthetics with N-methyl D-aspartate (NMDA)-receptor antagonist and/or γ-aminobutyric acid (GABA) agonist activities may result in neuronal degeneration and/or neuronal cell death in neonatal rats. Evaluating pediatric drug candidates for this potential neurotoxicity is often part of overall preclinical new drug development strategy. This specialized assessment may require dosing neonatal rats at postnatal day 7 at the peak of the brain growth spurt and evaluating brain tissue 24 to 48 hours following dosing. The need to identify methods to aid in the accurate and reproducible detection of lesions associated with this type of neurotoxic profile is paramount for meeting the changing needs of neuropathology assessment and addressing emerging challenges in the neuroscience field. We document the use of Fluoro-Jade B (FJB) staining, to be used in conjunction with standard hematoxylin and eosin staining, to detect acute neurodegeneration and neuronal cell death that can be caused by some NMDA-receptor antagonists and/or GABA agonists in the neonatal rat brain. The FJB staining is simple, specific, and sensitive and can be performed on brain specimens from the same cohort of animals utilized for standard neurotoxicity assessment, thus satisfying animal welfare recommendations with no effect on achievement of scientific and regulatory goals.


2017 ◽  
Vol 114 (33) ◽  
pp. E6942-E6951 ◽  
Author(s):  
Genevieve E. Lind ◽  
Tung-Chung Mou ◽  
Lucia Tamborini ◽  
Martin G. Pomper ◽  
Carlo De Micheli ◽  
...  

NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.


Sign in / Sign up

Export Citation Format

Share Document