Radical Scavengers Protect Murine Lungs from Endotoxin-induced Hyporesponsiveness to Inhaled Nitric Oxide

2002 ◽  
Vol 96 (4) ◽  
pp. 926-933 ◽  
Author(s):  
Yehuda Raveh ◽  
Fumito Ichinose ◽  
Pini Orbach ◽  
Kenneth D. Bloch ◽  
Warren M. Zapol

Background Sepsis is associated with an impaired pulmonary vasodilator response to inhaled nitric oxide (NO). A combination of NO and other inflammatory mediators appears to be responsible for endotoxin-induced pulmonary vascular hyporesponsiveness to inhaled NO. The authors investigated whether scavengers of reactive oxygen species could preserve inhaled NO responsiveness in endotoxin-challenged mice. Methods The vasorelaxation to inhaled NO was studied in isolated, perfused, and ventilated lungs obtained from mice 16 h after an intraperitoneal challenge with saline or 50 mg/kg Escherichia coli lipopolysaccharide. In some mice, challenge with saline or lipopolysaccharide was followed by intraperitoneal administration of N-acetylcysteine, dimethylthiourea, EUK-8, or polyethylene glycol-conjugated catalase. Results The pulmonary vasodilator response of U46619-preconstricted isolated lungs to ventilation with 0.4, 4, and 40 ppm inhaled NO in lipopolysaccharide-challenged mice was reduced to 32, 43, and 60%, respectively, of that observed in saline-challenged mice (P < 0.0001). Responsiveness to inhaled NO was partially preserved in lipopolysaccharide-challenged mice treated with a single dose of N-acetylcysteine (150 or 500 mg/kg) or 20 U/g polyethylene glycol-conjugated catalase (all P < 0.05 vs. lipopolysaccharide alone). Responsiveness to inhaled NO was fully preserved by treatment with either dimethylthiourea, EUK-8, two doses of N-acetylcysteine (150 mg/kg administered 3.5 h apart), or 100 U/g polyethylene glycol-conjugated catalase (all P < 0.01 vs. lipopolysaccharide alone). Conclusions When administered to mice concurrently with lipopolysaccharide challenge, reactive oxygen species scavengers prevent impairment of pulmonary vasodilation to inhaled NO. Therapy with scavengers of reactive oxygen species may provide a means to preserve pulmonary vasodilation to inhaled NO in sepsis-associated acute lung injury.

1999 ◽  
Vol 91 (6) ◽  
pp. 1744-1744 ◽  
Author(s):  
Jörg Weimann ◽  
Kenneth D. Bloch ◽  
Masao Takata ◽  
Wolfgang Steudel ◽  
Warren M. Zapol

Background In animal models, endotoxin (lipopolysaccharide) challenge impairs the pulmonary vasodilator response to inhaled nitric oxide (NO). This impairment is prevented by treatment with inhibitors of NO synthase 2 (NOS2), including glucocorticoids and L-arginine analogs. However, because these inhibitors are not specific for NOS2, the role of this enzyme in the impairment of NO responsiveness by lipopolysaccharide remains incompletely defined. Methods To investigate the role of NOS2 in the development of lipopolysaccharide-induced impairment of NO responsiveness, the authors measured the vasodilator response to inhalation of 0.4, 4, and 40 ppm NO in isolated, perfused, and ventilated lungs obtained from lipopolysaccharide-pretreated (50 mg/kg intraperitoneally 16 h before lung perfusion) and untreated wild-type and NOS2-deficient mice. The authors also evaluated the effects of breathing NO for 16 h on pulmonary vascular responsiveness during subsequent ventilation with NO. Results In wild-type mice, lipopolysaccharide challenge impaired the pulmonary vasodilator response to 0.4 and 4 ppm NO (reduced 79% and 45%, respectively, P < 0.001), but not to 40 ppm. In contrast, lipopolysaccharide administration did not impair the vasodilator response to inhaled NO in NOS2-deficient mice. Breathing 20 ppm NO for 16 h decreased the vasodilator response to subsequent ventilation with NO in lipopolysaccharide-pretreated NOS2-deficient mice, but not in lipopolysaccharide-pretreated wild-type, untreated NOS2-deficient or untreated wild-type mice. Conclusions In response to endotoxin challenge, NO, either endogenously produced by NOS2 in wild-type mice or added to the air inhaled by NOS2-deficient mice, is necessary to impair vascular responsiveness to inhaled NO. Prolonged NO breathing, without endotoxin, does not impair vasodilation in response to subsequent NO inhalation. These results suggest that NO, plus other lipopolysaccharide-induced products, are necessary to impair responsiveness to inhaled NO in a murine sepsis model.


2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


2021 ◽  
Vol 56 (16) ◽  
pp. 10041-10052
Author(s):  
Laura Sánchez-Abella ◽  
Virginia Ruiz ◽  
Adrián Pérez-San Vicente ◽  
Hans-Jürgen Grande ◽  
Iraida Loinaz ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Rachael Knoblauch ◽  
Chris Geddes

While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including...


2014 ◽  
Vol 229 (12) ◽  
pp. 2015-2026 ◽  
Author(s):  
Shing-Chuan Shen ◽  
Ming-Shun Wu ◽  
Hui-Yi Lin ◽  
Liang-Yo Yang ◽  
Yi-Hsuan Chen ◽  
...  

2010 ◽  
Vol 63 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic ◽  
Rada Jesic-Vukicevic

Introduction. Paracetamol is an effective analgesic/antipyretic drug when used at therapeutic doses. However, the overdose of paracetamol can cause severe liver injury and liver necrosis. The mechanism of paracetamol-induced liver injury is still not completely understood. Reactive metabolite formation, depletion of glutathione and alkylation of proteins are the triggers of inhibition of mitochondrial respiration, adenosine triphosphate depletion and mitochondrial oxidant stress leading to hepatocellular necrosis. Role of oxidative stress in paracetamol-induced liver injury. The importance of oxidative stress in paracetamol hepatotoxicity is controversial. Paracetamol induced liver injury cause the formation of reactive oxygen species. The potent sources of reactive oxygen are mitochondria, neutrophils, Kupffer cells and the enzyme xatnine oxidase. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in paracetamol-induced oxidative stress. The production of mitochondrial reactive oxygen species is increased, and the glutathione content is decreased in paracetamol overdose. Oxidative stress in mitochondria leads to mito?chondrial dysfunction with adenosine triphosphate depletion, increase mitochondrial permeability transition, deoxyribonu?cleic acid fragmentation which contribute to the development of hepatocellular necrosis in the liver after paracetamol overdose. Role of Kupffer cells in paracetamol-induced liver injury. Paracetamol activates Kupffer cells, which then release numerous cytokines and signalling molecules, including nitric oxide and superoxide. Kupffer cells are important in peroxynitrite formation. On the other hand, the activated Kupffer cells release anti-inflammatory cytokines. Role of neutrophils in paracetamol-induced liver injury. Paracetamol-induced liver injury leads to the accumulation of neutrophils, which release lysosomal enzymes and generate superoxide anion radicals through the enzyme nicotinamide adenine dinucleotide phosphate oxidase. Hydrogen peroxide, which is influenced by the neutrophil-derived enzyme myeloperoxidase, generates hypochlorus acid as a potent oxidant. Role of peroxynitrite in paracetamol-induced oxidative stress. Superoxide can react with nitric oxide to form peroxynitrite, as a potent oxidant. Nitrotyrosine is formed by the reaction of tyrosine with peroxynitrite in paracetamol hepatotoxicity. Conclusion. Overdose of paracetamol may produce severe liver injury with hepatocellular necrosis. The most important mechanisms of cell injury are metabolic activation of paracetamol, glutathione depletion, alkylation of proteins, especially mitochondrial proteins, and formation of reactive oxygen/nitrogen species.


2015 ◽  
Vol 66 (10) ◽  
pp. 2869-2876 ◽  
Author(s):  
Irene Serrano ◽  
María C. Romero-Puertas ◽  
Luisa M. Sandalio ◽  
Adela Olmedilla

Sign in / Sign up

Export Citation Format

Share Document