Reactive oxygen species (ROS)-responsive biocompatible polyethylene glycol nanocomposite hydrogels with different graphene derivatives

2021 ◽  
Vol 56 (16) ◽  
pp. 10041-10052
Author(s):  
Laura Sánchez-Abella ◽  
Virginia Ruiz ◽  
Adrián Pérez-San Vicente ◽  
Hans-Jürgen Grande ◽  
Iraida Loinaz ◽  
...  
2021 ◽  
Vol 67 (2) ◽  
pp. 44-52
Author(s):  
N.G. Zemlianskykh ◽  
◽  
L.O. Babiychuk ◽  

Protein modifications in the membrane-cytoskeleton complex (MCC) of human erythrocytes, as well as changes in the intensity of reactive oxygen species (ROS) production upon cell cryopreservation with polyethylene glycol (PEG) were investigated. The protein profile of ghosts of erythrocytes frozen with PEG has common features with both the control and cells frozen without cryoprotectant. PEG makes it possible to restrict the structural rearrangements of the main MCC proteins under the effect of extreme factors and to restrain the amount of high molecular weight polypeptide complexes induced by the protein-cross-linking reagent diamide at the control level, in contrast to cells frozen without a cryoprotectant. However, changes related to the protein peroxiredoxin 2 in ghosts of erythrocytes cryopreserved with PEG are also attributed to cells frozen without a cryoprotectant that may be associated with the activation of oxidative processes. This is evidenced by a 10-fold increase in ROS formation in erythrocytes frozen under PEG protection. Thus, upon cryopreservation of erythrocytes with PEG, certain disorders in MCC proteins may be associated with increased formation of ROS, which may contribute to the disorganization of the structural components of MCC and disrupt the stability of cryopreserved cells under physiological conditions.


2002 ◽  
Vol 96 (4) ◽  
pp. 926-933 ◽  
Author(s):  
Yehuda Raveh ◽  
Fumito Ichinose ◽  
Pini Orbach ◽  
Kenneth D. Bloch ◽  
Warren M. Zapol

Background Sepsis is associated with an impaired pulmonary vasodilator response to inhaled nitric oxide (NO). A combination of NO and other inflammatory mediators appears to be responsible for endotoxin-induced pulmonary vascular hyporesponsiveness to inhaled NO. The authors investigated whether scavengers of reactive oxygen species could preserve inhaled NO responsiveness in endotoxin-challenged mice. Methods The vasorelaxation to inhaled NO was studied in isolated, perfused, and ventilated lungs obtained from mice 16 h after an intraperitoneal challenge with saline or 50 mg/kg Escherichia coli lipopolysaccharide. In some mice, challenge with saline or lipopolysaccharide was followed by intraperitoneal administration of N-acetylcysteine, dimethylthiourea, EUK-8, or polyethylene glycol-conjugated catalase. Results The pulmonary vasodilator response of U46619-preconstricted isolated lungs to ventilation with 0.4, 4, and 40 ppm inhaled NO in lipopolysaccharide-challenged mice was reduced to 32, 43, and 60%, respectively, of that observed in saline-challenged mice (P < 0.0001). Responsiveness to inhaled NO was partially preserved in lipopolysaccharide-challenged mice treated with a single dose of N-acetylcysteine (150 or 500 mg/kg) or 20 U/g polyethylene glycol-conjugated catalase (all P < 0.05 vs. lipopolysaccharide alone). Responsiveness to inhaled NO was fully preserved by treatment with either dimethylthiourea, EUK-8, two doses of N-acetylcysteine (150 mg/kg administered 3.5 h apart), or 100 U/g polyethylene glycol-conjugated catalase (all P < 0.01 vs. lipopolysaccharide alone). Conclusions When administered to mice concurrently with lipopolysaccharide challenge, reactive oxygen species scavengers prevent impairment of pulmonary vasodilation to inhaled NO. Therapy with scavengers of reactive oxygen species may provide a means to preserve pulmonary vasodilation to inhaled NO in sepsis-associated acute lung injury.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1447
Author(s):  
Hayden Winter ◽  
Megan J. Neufeld ◽  
Lydia Makotamo ◽  
Conroy Sun ◽  
Andrea M. Goforth

X-ray radiotherapy is a common method of treating cancerous tumors or other malignant lesions. The side effects of this treatment, however, can be deleterious to patient quality of life if critical tissues are affected. To potentially lower the effective doses of radiation and negative side-effects, new classes of nanoparticles are being developed to enhance reactive oxygen species production during irradiation. This report presents the synthesis and radiotherapeutic efficacy evaluation of a new nanoparticle formulation designed for this purpose, composed of a CaF2 core, mesoporous silica shell, and polyethylene glycol coating. The construct was additionally doped with Tb and Eu during the CaF2 core synthesis to prepare nanoparticles (NPs) with X-ray luminescent properties for potential application in fluorescence imaging. The mesoporous silica shell was added to provide the opportunity for small molecule loading, and the polyethylene glycol coating was added to impart aqueous solubility and biocompatibility. The potential of these nanomaterials to act as radiosensitizers for enhancing X-ray radiotherapy was supported by reactive oxygen species generation assays. Further, in vitro experiments indicate biocompatibility and enhanced cellular damage during X-ray radiotherapy.


2022 ◽  
Author(s):  
Valeria Timganova ◽  
Svetlana Zamorina ◽  
Maria Bochkova ◽  
Anton Nechaev ◽  
Pavel Khramtsov ◽  
...  

Graphene oxide (GO) is very useful for biomedicine, due to its physicochemical properties; therefore, its interaction with cells of the immune system has beenextensively studied. Many studies have aimed toreduce the undesirable effects of GO through chemical modification, including through polyethylene glycol (PEG) coating. Neutrophils are the first to respond to foreign object invasion in the body. Their main functions are the uptake and destruction of foreign particles, including with the help of reactive oxygen species (ROS).Our study aimed to investigate theengulfment of unmodified graphene oxide (GO) and graphene oxide coated with polyethylene glycol (GO-PEG) by human neutrophils and the effect of nanosheets on the production of ROS.We used sheets of GO (Ossila, Great Britain, average plate size 1-5 μm) and GO-PEG (569 ± 14 nm, PEG coating≈ 20%) at concentrations of 12.5μg/mL, 25μg/mL, and 50 μg/mL. The uptake of nanosheets was assessed by flow cytometry, taking into account the level of background adhesion of nanoparticles. ROS production was evaluated by luminol-dependent chemiluminescence (LCL).It was found that GO (12.5μg/mL, 25μg/mL, and 50 μg/mL) was actively internalized by neutrophils, while the uptake of GO-PEG was not detected. GO and GO-PEG particles (25 μg/mLand 50 μg/mL) reduced the total production of ROS by human leukocytes.Thus, the modifying of GOnanosheets with PEG resulted in the abolishment of their active uptake by neutrophils but did not affect the GO inhibitory effect on their oxidative activity. Keywords: graphene oxide surface modification, pegylated graphene oxide nanosheets, nanoparticle uptake, human neutrophils, of reactive oxygen species


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Sign in / Sign up

Export Citation Format

Share Document