Single Amino Acid Residue in the Extracellular Portion of Transmembrane Segment 2 in the Nicotinic α7 Acetylcholine Receptor Modulates Sensitivity to Ketamine

2004 ◽  
Vol 100 (3) ◽  
pp. 657-662 ◽  
Author(s):  
Kenny K. Ho ◽  
Pamela Flood

Background Ketamine inhibits the activation of both heteromeric and homomeric nicotinic acetylcholine receptors. The site of molecular interaction is unknown. Methods The inhibition of alpha7 nicotinic acetylcholine receptors by ketamine was compared to that of 5-hydroxytryptamine-3A (5HT3A) receptors that are resistant to ketamine inhibition in Xenopus laevis oocytes. To determine whether the region of transmembrane segments 2 and 3 is relevant for ketamine inhibition of nicotinic receptors, the authors identified single amino acid residues that differ in the sequence alignment of the two proteins. They created 22 mutant alpha7 nicotinic receptors that contain the single homologous amino acid residue in the 5HT3A sequence. Results Of the 22 mutant alpha7 nicotinic receptors tested, only one (alpha7 A258S) was significantly resistant to 20 microM ketamine. The ketamine concentration response relationship for the alpha7 A258S mutant was shifted to the right with the IC50 for ketamine increased from 17 +/- 2 for wild type to 30 +/- 3 microM in the mutant (P < 0.001). Agonist activation was unchanged by the mutation. The homologous amino acid residue in the 5HT3A receptor was mutated to the alanine that occurs in the wild-type nicotinic receptor. This mutation made the previously insensitive 5HT3A receptor sensitive to ketamine (P < 0.001). Conclusions Conservative mutation of a single amino acid in the extracellular transmembrane segment 2 domain induces resistance to ketamine inhibition in the alpha7 nicotinic receptor and sensitivity to inhibition in the 5HT3A receptor. This region may represent a ketamine binding site in the alpha7 nicotinic receptor, or it may be an important transduction site for ketamine action.

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Cecilia Gotti ◽  
Michael. J. Marks ◽  
Neil S. Millar ◽  
Susan Wonnacott

Nicotinic acetylcholine receptors are members of the Cys-loop family of transmitter-gated ion channels that includes the GABAA, strychnine-sensitive glycine and 5-HT3 receptors [210, 3, 155, 220, 252]. All nicotinic receptors are pentamers in which each of the five subunits contains four α-helical transmembrane domains. Genes encoding a total of 17 subunits (α1-10, β1-4, γ, δ and ε) have been identified [117]. All subunits with the exception of α8 (present in avian species) have been identified in mammals. All α subunits possess two tandem cysteine residues near to the site involved in acetylcholine binding, and subunits not named α lack these residues [155]. The orthosteric ligand binding site is formed by residues within at least three peptide domains on the α subunit (principal component), and three on the adjacent subunit (complementary component). nAChRs contain several allosteric modulatory sites. One such site, for positive allosteric modulators (PAMs) and allosteric agonists, has been proposed to reside within an intrasubunit cavity between the four transmembrane domains [257, 85]; see also [103]). The high resolution crystal structure of the molluscan acetylcholine binding protein, a structural homologue of the extracellular binding domain of a nicotinic receptor pentamer, in complex with several nicotinic receptor ligands (e.g.[33]) and the crystal structure of the extracellular domain of the α1 subunit bound to α-bungarotoxin at 1.94 Å resolution [53], has revealed the orthosteric binding site in detail (reviewed in [210, 117, 37, 193]). Nicotinic receptors at the somatic neuromuscular junction of adult animals have the stoichiometry (α1)2β1δε, whereas an extrajunctional (α1)2β1γδ receptor predominates in embryonic and denervated skeletal muscle and other pathological states. Other nicotinic receptors are assembled as combinations of α(2-6) and &beta(2-4) subunits. For α2, α3, α4 and β2 and β4 subunits, pairwise combinations of α and β (e.g. α3β4 and α4β2) are sufficient to form a functional receptor in vitro, but far more complex isoforms may exist in vivo (reviewed in [94, 91, 155]). There is strong evidence that the pairwise assembly of some α and β subunits can occur with variable stoichiometry [e.g. (α4)2(β2)2 or (α4)3(β2)2] which influences the biophysical and pharmacological properties of the receptor [155]. α5 and β3 subunits lack function when expressed alone, or pairwise, but participate in the formation of functional hetero-oligomeric receptors when expressed as a third subunit with another α and β pair [e.g. α4α5αβ2, α4αβ2β3, α5α6β2, see [155] for further examples]. The α6 subunit can form a functional receptor when co-expressed with β4 in vitro, but more efficient expression ensues from incorporation of a third partner, such as β3 [256]. The α7, α8, and α9 subunits form functional homo-oligomers, but can also combine with a second subunit to constitute a hetero-oligomeric assembly (e.g. α7β2 and α9α10). For functional expression of the α10 subunit, co-assembly with α9 is necessary. The latter, along with the α10 subunit, appears to be largely confined to cochlear and vestibular hair cells. Comprehensive listings of nicotinic receptor subunit combinations identified from recombinant expression systems, or in vivo, are given in [155]. In addition, numerous proteins interact with nicotinic ACh receptors modifying their assembly, trafficking to and from the cell surface, and activation by ACh (reviewed by [154, 9, 115]).The nicotinic receptor Subcommittee of NC-IUPHAR has recommended a nomenclature and classification scheme for nicotinic acetylcholine (nACh) receptors based on the subunit composition of known, naturally- and/or heterologously-expressed nACh receptor subtypes [139]. Headings for this table reflect abbreviations designating nACh receptor subtypes based on the predominant α subunit contained in that receptor subtype. An asterisk following the indicated α subunit denotes that other subunits are known to, or may, assemble with the indicated α subunit to form the designated nACh receptor subtype(s). Where subunit stoichiometries within a specific nACh receptor subtype are known, numbers of a particular subunit larger than 1 are indicated by a subscript following the subunit (enclosed in parentheses – see also [44]).


2008 ◽  
Vol 82 (18) ◽  
pp. 9123-9133 ◽  
Author(s):  
Khalid A. Timani ◽  
Dengyun Sun ◽  
Minghao Sun ◽  
Celia Keim ◽  
Yuan Lin ◽  
...  

ABSTRACT Parainfluenza virus 5 (PIV5) is a prototypical paramyxovirus. The V/P gene of PIV5 encodes two mRNA species through a process of pseudotemplated insertion of two G residues at a specific site during transcription, resulting in two viral proteins, V and P, whose N termini of 164 amino acid residues are identical. Previously it was reported that mutating six amino acid residues within this identical region results in a recombinant PIV5 (rPIV5-CPI−) that exhibits elevated viral protein expression and induces production of cytokines, such as beta interferon and interleukin 6. Because the six mutations correspond to the shared region of the V protein and the P protein, it is not clear whether the phenotypes associated with rPIV5-CPI− are due to mutations in the P protein and/or mutations in the V protein. To address this question, we used a minigenome system and recombinant viruses to study the effects of mutations on the functions of the P and V proteins. We found that the P protein with six amino acid residue changes (Pcpi−) was more efficient than wild-type P in facilitating replication of viral RNA, while the V protein with six amino acid residue changes (Vcpi−) still inhibits minigenome replication as does the wild-type V protein. These results indicate that elevated viral gene expression in rPIV5-CPI− virus-infected cells can be attributed to a P protein with an increased ability to facilitate viral RNA synthesis. Furthermore, we found that a single amino acid residue change at position 157 of the P protein from Ser (the residue in the wild-type P protein) to Phe (the residue in Pcpi−) is sufficient for elevated viral gene expression. Using mass spectrometry and 33P labeling, we found that residue S157 of the P protein is phosphorylated. Based on these results, we propose that phosphorylation of the P protein at residue 157 plays an important role in regulating viral RNA replication.


2021 ◽  
Vol 22 (14) ◽  
pp. 7552
Author(s):  
Nathalia M. Pinheiro ◽  
Rosana Banzato ◽  
Iolanda Tibério ◽  
Marco A. M. Prado ◽  
Vânia F. Prado ◽  
...  

(1) Background: The lung cholinergic pathway is important for controlling pulmonary inflammation in acute lung injury, a condition that is characterized by a sudden onset and intense inflammation. This study investigated changes in the expression levels of nicotinic and muscarinic acetylcholine receptors (nAChR and mAChR) in the lung during acute lung injury. (2) Methods: acute lung injury (ALI) was induced in wild-type and cholinergic-deficient (VAChT-KDHOM) mice using intratracheal lipopolysaccharide (LPS) instillation with or without concurrent treatment with nicotinic ligands. Bronchoalveolar lavage fluid was collected to evaluate markers of inflammation, and then the lung was removed and processed for isolation of membrane fraction and determination of acetylcholine receptors level using radioligand binding assays. (3) Results: LPS-induced increase in lung inflammatory markers (e.g., neutrophils and IL-1β) was significantly higher in VAChT-KDHOM than wild-type mice. In contrast, LPS treatment resulted in a significant increase in lung’s α7 nicotinic receptor level in wild-type, but not in VAChT-KDHOM mice. However, treatment with PNU 282987, a selective α7 nicotinic receptor agonist, restored VAChT-KDHOM mice’s ability to increase α7 nicotinic receptor levels in response to LPS-induced acute lung injury and reduced lung inflammation. LPS also increased muscarinic receptors level in VAChT-KDHOM mice, and PNU 282987 treatment reduced this response. (4) Conclusions: Our data indicate that the anti-inflammatory effects of the lung cholinergic system involve an increase in the level of α7 nicotinic receptors. Pharmacological agents that increase the expression or the function of lung α7 nicotinic receptors have potential clinical uses for treating acute lung injury.


2002 ◽  
Vol 88 (3) ◽  
pp. 1318-1327 ◽  
Author(s):  
Elodie Christophe ◽  
Aline Roebuck ◽  
Jochen F. Staiger ◽  
Daniel J. Lavery ◽  
Serge Charpak ◽  
...  

Nicotinic acetylcholine receptors are widely expressed in the neocortex but their functional roles remain largely unknown. Here we investigated the effect of nicotinic receptor activation on interneurons of layer I, which contains a high density of cholinergic fiber terminals. Ninety-seven of 101 neurons recorded in whole cell configuration in rat acute slices were excited by local pressure application of nicotinic agonists, acetylcholine (500 μM), 1,1-dimethyl-4-phenyl-piperazinium (500 μM) or choline (10 mM). Biocytin labeling confirmed that our sample included different morphological types of layer I interneurons. The responses to nicotinic agonists persisted in presence of glutamate and muscarinic receptor antagonists and on further addition of Cd2+ or tetrodotoxin, indicating that they were mediated by direct activation of postsynaptic nicotinic receptors. The kinetics of the currents and their sensitivity to nicotinic receptor antagonists, methyllycaconitine (1–10 nM) or dihydro-β-erythroidine (500 nM), suggested that early and late components of the responses were mediated by α7 and non-α7 types of receptors. Both components had inwardly rectifying I-V curves, which differed when intracellular spermine was omitted. Single-cell RT-PCR experiments identified α4, α7, and β2 as the predominantly expressed mRNAs, suggesting that the receptors consisted of α7 homomers and α4β2 heteromers. Finally, selective excitation of layer I interneurons through activation of their nicotinic receptors resulted in a tetrodotoxin-sensitive increase of inhibitory synaptic currents recorded in nonpyramidal cells but not in pyramidal cells of layer II/III. These results suggest that acetylcholine released in layer I may induce a disinhibition of the cortical network through activation of nicotinic receptors expressed by layer I interneurons.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1599-1610
Author(s):  
Jinah Kim ◽  
Daniel S Poole ◽  
Laura E Waggoner ◽  
Anthony Kempf ◽  
David S Ramirez ◽  
...  

Abstract Egg-laying behavior in Caenorhabditis elegans is regulated by multiple neurotransmitters, including acetylcholine and serotonin. Agonists of nicotinic acetylcholine receptors such as nicotine and levamisole stimulate egg laying; however, the genetic and molecular basis for cholinergic neurotransmission in the egg-laying circuitry is not well understood. Here we describe the egg-laying phenotypes of eight levamisole resistance genes, which affect the activity of levamisole-sensitive nicotinic receptors in nematodes. Seven of these genes, including the nicotinic receptor subunit genes unc-29, unc-38, and lev-1, were essential for the stimulation of egg laying by levamisole, though they had only subtle effects on egg-laying behavior in the absence of drug. Thus, these genes appear to encode components of a nicotinic receptor that can promote egg laying but is not necessary for egg-laying muscle contraction. Since the levamisole-receptor mutants responded to other cholinergic drugs, other acetylcholine receptors are likely to function in parallel with the levamisole-sensitive receptors to mediate cholinergic neurotransmission in the egg-laying circuitry. In addition, since expression of functional unc-29 in muscle cells restored levamisole sensitivity under some but not all conditions, both neuronal and muscle cell UNC-29 receptors are likely to contribute to the regulation of egg-laying behavior. Mutations in one levamisole receptor gene, unc-38, also conferred both hypersensitivity and reduced peak response to serotonin; thus nicotinic receptors may play a role in regulating serotonin response pathways in the egg-laying neuromusculature.


1997 ◽  
Vol 41 (12) ◽  
pp. 2616-2620 ◽  
Author(s):  
K De Vreese ◽  
I Van Nerum ◽  
K Vermeire ◽  
J Anné ◽  
E De Clercq

The bicyclams are a new class of anti-human immunodeficiency virus (anti-HIV) compounds targeted at viral entry. From marker rescue experiments, it appears that the envelope gp120 glycoprotein plays an important role in the anti-HIV activity of the bicyclams. Bicyclam-resistant strains contain a number of amino acid changes scattered over the V2 to V5 region of gp120. Experiments aimed at estimating the relative importance of particular amino acid changes with regard to the overall resistance pattern are described. The sequences of some partially bicyclam-resistant virus strains, obtained during the resistance development process, were analyzed, and the corresponding 50% effective concentrations were determined. Selected mutations observed in bicyclam-resistant strains were introduced in the wild-type background by site-directed mutagenesis. In addition, some amino acids were back-mutated to their wild-type counterparts in an otherwise JM3100-resistant strain. The sensitivities of these mutant viruses to bicyclams were determined. Construction of chimeric viruses, carrying the V3 loop of JM3100-resistant virus in a wild-type HIV type 1 HXB2 background, enabled us to investigate the importance of the mutations in the V3 loop of JM3100-resistant virus. From the results described in the report, it can be concluded that single amino acid substitutions do not influence the observed resistance to JM3100. Also, the mutations in the V3 loop are not sufficient to engender even a partially resistant phenotype. We postulate that the overall conformation of gp120 determines the degree of sensitivity or resistance of HIV strains to bicyclams.


1992 ◽  
Vol 12 (5) ◽  
pp. 2372-2382
Author(s):  
K M Arndt ◽  
S L Ricupero ◽  
D M Eisenmann ◽  
F Winston

A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition.


Sign in / Sign up

Export Citation Format

Share Document