HPA-1 genotype in arterial thrombosis???role of HPA-1b polymorphism in platelet function

1997 ◽  
Vol 8 (5) ◽  
pp. 284-290 ◽  
Author(s):  
J. Corral ◽  
R. Gonz??lez-Conejero ◽  
J. Rivera ◽  
J. A. Iniesta ◽  
M. L. Lozano ◽  
...  
Blood ◽  
2020 ◽  
Author(s):  
Manasa K. Nayak ◽  
Madankumar Ghatge ◽  
Gagan D Flora ◽  
Nirav Dhanesha ◽  
Manish Jain ◽  
...  

Very little is known about the role of metabolic regulatory mechanisms in platelet activation and thrombosis. Dimeric pyruvate kinase M2 (PKM2) is a crucial regulator of aerobic glycolysis that facilitates the production of lactate and metabolic reprogramming. Herein, we report that limiting PKM2 dimer formation, using a small molecule inhibitor ML265, negatively regulates lactate production and glucose uptake in human and murine stimulated platelets. Furthermore, limiting PKM2 dimer formation reduced agonist-induced platelet activation, aggregation, clot retraction, and thrombus formation under arterial shear stress in vitro in both human and murine platelets. Mechanistically, limiting PKM2 dimerization downregulated PI3 kinase-mediated Akt /GSK3 signaling in human and murine platelets. To provide further evidence for the role of PKM2 in platelet function, we generated a megakaryocyte or platelet-specific PKM2-/- mutant strain (PKM2fl/flPF4Cre+). Platelet-specific PKM2 deficient mice exhibited impaired agonist-induced platelet activation, aggregation, clot retraction, PI3 kinase-mediated Akt /GSK3 signaling, and were less susceptible to arterial thrombosis in FeCl3-induced carotid and laser-injury induced mesenteric artery thrombosis models, without altering hemostasis. Wild-type mice treated with ML265 were less susceptible to arterial thrombosis with unaltered tail bleeding times. These findings reveal a major role for PKM2 in coordinating multiple aspects of platelet function, from metabolism to cellular signaling to thrombosis, and implicate PKM2 as a potential target for antithrombotic therapeutic intervention.


2019 ◽  
Vol 17 (9) ◽  
pp. 1489-1499 ◽  
Author(s):  
Enzo Lüsebrink ◽  
Verena Warm ◽  
Joachim Pircher ◽  
Andreas Ehrlich ◽  
Zhe Zhang ◽  
...  

Author(s):  
Emily Janus-Bell ◽  
Alexandra Yakusheva ◽  
Cyril Scandola ◽  
Nicolas Receveur ◽  
Ahmed Muhammad-Usman ◽  
...  

Objective: Integrins are key regulators of various platelet functions. The pathophysiological importance of most platelet integrins has been investigated, with the exception of α5β1, a receptor for fibronectin. The aim of this study was to characterize the role of α5β1 in megakaryopoiesis, platelet function, and to determine its importance in hemostasis and arterial thrombosis. Approach and results: We generated a mouse strain deficient for integrin α5β1 on megakaryocytes and platelets (PF4Cre-α5-/-). PF4Cre-α5-/- mice were viable, fertile and presented no apparent signs of abnormality. Megakaryopoiesis appears unaltered as evidence by a normal megakaryocytes morphology and development, which is in agreement with a normal platelet count. Expression of the main platelet receptors and the response of PF4Cre-α5-/- platelets to a series of agonists were all completely normal. Adhesion and aggregation of PF4Cre-α5-/- platelets under shear flow on fibrinogen, laminin or von Willebrand factor were unimpaired. In contrast, PF4Cre-α5-/- platelets displayed a marked decrease in adhesion, activation and aggregation on fibrillar cellular fibronectin and collagen. PF4Cre-α5-/- mice presented no defect in a tail-bleeding time assay and no increase in inflammatory bleeding in a reverse passive Arthus model and a lipopolysaccharide pulmonary inflammation model. Finally, no defects were observed in three distinct experimental models of arterial thrombosis based on ferric chloride-induced injury of the carotid artery, mechanical injury of the abdominal aorta or laser-induced injury of mesenteric vessels. Conclusion: In summary, this study shows that platelet integrin α5β1 is a key receptor for fibrillar cellular fibronectin but is dispensable in hemostasis and arterial thrombosis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 868-868
Author(s):  
Manasa Nayak ◽  
Nirav Dhanesha ◽  
Manish Jain ◽  
Anil Chauhan

Abstract Background: Most of the cellular responses initiated upon platelet activation are energy consuming. Like normal cells, resting platelets rely primarily on oxidative phosphorylation (OXPHOS) to generate ATP, whereas activated platelets exhibit a high level of aerobic glycolysis (conversion of glucose to lactate in the presence of oxygen, a phenomenon referred to as the Warburg effect in tumor cells) suggesting that metabolic plasticity exists in activated platelets. Although aerobic glycolysis yields less total ATP when compared to OXPHOS, the rate of ATP generation is faster in aerobic glycolysis compared to OXPHOS, which is well suited for high-energy demands during platelet activation. Pyruvate kinases (PKs) catalyzes the final step of glycolysis, the formation of pyruvate and ATP from phosphoenolpyruvate and ADP. Four PK isoforms exist in mammals: L and R isoforms are expressed in the liver and red blood cells; the M1 isoform is expressed in most adult tissues that have high catabolic demands including muscle and brain; M2 is expressed in cells including activated platelets and leukocytes. While PKM1 and tetrameric PKM2 favor ATP production from OXPHOS through the TCA cycle, dimeric PKM2 drives aerobic glycolysis. Objective: We tested an innovative concept that by manipulating the energy demand of activated platelets (metabolic plasticity), by targeting PKM2, will inhibit platelet function and thrombosis. Methods: Using a specific inhibitor of PKM2 (inhibits PKM2 dimerization and stabilizes tetramers) and standardized platelet in vitro assays, we determined the mechanistic role of PKM2 in modulating platelet function in human and mice. To provide definitive evidence, we generated a megakaryocyte or platelet-specific PKM2-/- mouse (PKM2fl/flPF4Cre). Lactate assay was performed in WT and PKM2 null platelets. Susceptibility to thrombosis was evaluated in vitro (microfluidics flow chamber) and in vivo (FeCl3-induced carotid artery thrombosis and laser injury models) by utilizing intravital microscopy. Results: We found that PKM2 is relatively highly expressed compared to PKM1 in human and murine platelets. Transmission electron microscopy (immunogold staining) revealed that PKM2 is found in the cytoplasm and a- granule in resting platelets, whereas most of PKM2 translocated to cytoplasm upon activation. Human and mouse platelets pretreated with PKM2 inhibitor exhibited decreased platelet aggregation to sub-optimal doses of collagen and convulxin but not to thrombin. In microfluidics flow chamber assay, human and whole mouse blood pretreated with PKM2 inhibitor formed small thrombi when perfused over collagen for 5 min at an arterial shear rate of 1500s-1 (P<0.05 vs. vehicle control). Platelets from PKM2fl/flPF4Cre mice exhibited decreased platelet aggregation to sub-optimal doses of collagen and convulxin, but not to thrombin, compared to PKM2fl/fl mice concomitant with decrease lactate production. In microfluidics flow chamber assay, whole blood from PKM2fl/flPF4Cre mice formed smaller thrombi when perfused over collagen for 5 min at an arterial shear rate of 1500s-1, compared to PKM2fl/fl mice. PKM2fl/flPF4Cre mice were less susceptible to thrombosis in the FeCl3-induced carotid and laser injury-induced mesenteric artery thrombosis models (P<0.05 vs. vehicle control, N=10 mice/group), without altering hemostasis. PKM2 regulates the phosphorylation signal transducer and activator of transcription 3 (STAT3) and p-STAT3 act as a protein scaffold that facilitates the catalytic process of activating PLCg by kinase Syk in response to low-doses of collagen and CRP, but not TRAP or ADP in human and murine platelets. Interestingly, we found that PKM2 and STAT3 colocalized in the convulixn- stimulated control platelets and less phosphorylation of STAT-3 was observed in activated PKM2 null platelets (P<0.05 vs. WT), suggesting a non-glycolytic role of the PKM2 in regulating collagen signaling. Conclusions: Our results suggest that dimeric PKM2 regulates platelet function and arterial thrombosis most likely via GPVI signaling pathway. We suggest that manipulating metabolic plasticity by targeting dimeric PKM2 may be explored as a novel strategy to inhibit platelet function and arterial thrombosis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1843-1850 ◽  
Author(s):  
E Arnaud ◽  
M Lafay ◽  
P Gaussem ◽  
V Picard ◽  
M Jandrot-Perrus ◽  
...  

Abstract An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion- binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration- dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma- thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion- binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ahmed Alarabi ◽  
Zubair Karim ◽  
Victoria Hinojos ◽  
Patricia A Lozano ◽  
Keziah Hernandez ◽  
...  

Platelet activation involves tightly regulated processes to ensure a proper hemostasis response, but when unbalanced, can lead to pathological consequences such as thrombus formation. G-protein coupled receptors (GPCRs) regulate platelet function by interacting with and mediating the response to various physiological agonists. To this end, an essential mediator of GPCR signaling is the G protein Gαβγ heterotrimers, in which the βγ subunits are central players in downstream signaling pathways. While much is known regarding the role of the Gα subunit in platelet function, that of the βγ remains poorly understood. Therefore, we investigated the role of Gβγ subunits in platelet function using a Gβγ (small molecule) inhibitor, namely gallein. We observed that gallein inhibits platelet aggregation and secretion in response to agonist stimulation, in both mouse and human platelets. Furthermore, gallein also exerted inhibitory effects on integrin αIIbβ3 activation and clot retraction. Finally, gallein’s inhibitory effects manifested in vivo , as documented by its ability to modulate physiological hemostasis and delay thrombus formation. Taken together, our findings demonstrate, for the first time, that Gβγ directly regulates GPCR-dependent platelet function, in vitro and in vivo . Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.


2017 ◽  
Vol 44 (2) ◽  
pp. 106-113 ◽  
Author(s):  
Dejana Bogdanic ◽  
Nenad Karanovic ◽  
Jela Mratinovic-Mikulandra ◽  
Branka Paukovic-Sekulic ◽  
Dijana Brnic ◽  
...  

Author(s):  
Mihir K Patel ◽  
Kiranj K. Chaudagar ◽  
Anita A. Mehta

Objective: Although recent advances in the treatment of congestive heart disease, mortality among patients’ remains a questionable remark. Therefore, we evaluated the role of capsaicin on in vitro and ex vivo platelet aggregation induced by Adenosine Di-Phosphate (ADP) as well as in in vivo thrombosis models and role of NO, KATP was also identified in the capsaicin-induced anti-platelet animal model as well as in vivo model of arterial thrombosis.Methods: According to body weight wistar rats were divided into five groups. Group I and Group II was treated with saline and capsaicin (3 mg/kg, i. v), while animals from Group III were treated with N(ω)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg, i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group IV animals were treated with glibenclamide (10 mg/kg,i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group V was considered as a positive control and administered clopidogrel (30 mg/kg, p. o). Animals were subjected for in vitro, ex-vivo platelet aggregation assay. ADP (30µM) was utilized as an aggregating agent in these experiments. After these assays; animals of each group were subjected for subaqueous tail bleeding time in a rat model and FeCl3-induced arterial thrombosis model in rats.Results: In ADP-induced in vitro platelet aggregation, a significant reduction in % platelet aggregation was observed at 50µM (64.35±4.641) and 100µM (52.72±4.192) concentration of capsaicin as compared to vehicle control (85.82±3.716). Capsaicin (3 mg/kg, i. v) also showed a significant reduction (49.53±4.075) in ex-vivo ADP-induced platelet aggregation as compared to vehicle control (89.38±2.057). In FeCl3 induced arterial thrombosis model, Capsaicin (3 mg/kg, i. v) exhibited an increase in time to occlusion in this rodent model and presence of the L-NAME and glibenclamide had inhibited the activity of capsaicin.Conclusion: In our study, capsaicin (50 µM, 100µM) exhibited potent anti-platelet activity in ADP-induced platelet aggregation, similarly capsaicin exhibited significant anti-platelet action in the ex-vivo study. Moreover, the presence of L-NAME and glibenclamide inhibited the anti-thrombotic and anti-platelet action of capsaicin. Therefore, it was concluded that NO and KATP may be involved in the anti-thrombotic action of capsaicin.


Sign in / Sign up

Export Citation Format

Share Document