HUMAN CEREBROSPINAL OXIDATIVE STRESS MARKER RESPONSE FOLLOWING A NORMOBARIC HYPEROXIA TRIAL AFTER SEVERE TRAUMATIC BRAIN INJURY.

2005 ◽  
Vol 33 ◽  
pp. A102
Author(s):  
Ava M Puccio ◽  
Kevin A Walter ◽  
Hulya Bayir ◽  
Patrick M Kochanek ◽  
Leslie A Hoffman ◽  
...  
2019 ◽  
Vol 493 ◽  
pp. S262-S263
Author(s):  
L. González-García ◽  
A. Rodríguez-Rodríguez ◽  
L. Sempere-Bordes ◽  
L. Boyero-Corral ◽  
A.M. Ferrete-Araujo ◽  
...  

2008 ◽  
Vol 28 (4) ◽  
pp. 684-696 ◽  
Author(s):  
Marc A Seifman ◽  
Alexios A Adamides ◽  
Phuong N Nguyen ◽  
Shirley A Vallance ◽  
David James Cooper ◽  
...  

Oxidative stress plays a significant role in secondary damage after severe traumatic brain injury (TBI); and melatonin exhibits both direct and indirect antioxidant effects. Melatonin deficiency is deleterious in TBI animal models, and its administration confers neuroprotection, reducing cerebral oedema, and improving neurobehavioural outcome. This study aimed to measure the endogenous cerebrospinal fluid (CSF) and serum melatonin levels post-TBI in humans and to identify relationships with markers of oxidative stress via 8-isoprostaglandin-F2α (isoprostane), brain metabolism and neurologic outcome. Cerebrospinal fluid and serum samples of 39 TBI patients were assessed for melatonin, isoprostane, and various metabolites. Cerebrospinal fluid but not serum melatonin levels were markedly elevated (7.28±0.92 versus 1.47±0.35 pg/mL, P<0.0005). Isoprostane levels also increased in both CSF (127.62±16.85 versus 18.28±4.88 pg/mL, P<0.0005) and serum (562.46±50.78 versus 126.15±40.08 pg/mL ( P<0.0005). A strong correlation between CSF melatonin and CSF isoprostane on day 1 after injury ( r=0.563, P=0.002) suggests that melatonin production increases in conjunction with lipid peroxidation in TBI. Relationships between CSF melatonin and pyruvate ( r=0.369, P=0.049) and glutamate ( r=0.373, P=0.046) indicate that melatonin production increases with metabolic disarray. In conclusion, endogenous CSF melatonin levels increase after TBI, whereas serum levels do not. This elevation is likely to represent a response to oxidative stress and metabolic disarray, although further studies are required to elucidate these relationships.


2013 ◽  
Vol 118 (6) ◽  
pp. 1317-1328 ◽  
Author(s):  
Sarah B. Rockswold ◽  
Gaylan L. Rockswold ◽  
David A. Zaun ◽  
Jiannong Liu

Object Preclinical and clinical investigations indicate that the positive effect of hyperbaric oxygen (HBO2) for severe traumatic brain injury (TBI) occurs after rather than during treatment. The brain appears better able to use baseline O2 levels following HBO2 treatments. In this study, the authors evaluate the combination of HBO2 and normobaric hyperoxia (NBH) as a single treatment. Methods Forty-two patients who sustained severe TBI (mean Glasgow Coma Scale [GCS] score 5.7) were prospectively randomized within 24 hours of injury to either: 1) combined HBO2/NBH (60 minutes of HBO2 at 1.5 atmospheres absolute [ATA] followed by NBH, 3 hours of 100% fraction of inspired oxygen [FiO2] at 1.0 ATA) or 2) control, standard care. Treatments occurred once every 24 hours for 3 consecutive days. Intracranial pressure, surrogate markers for cerebral metabolism, and O2 toxicity were monitored. Clinical outcome was assessed at 6 months using the sliding dichotomized Glasgow Outcome Scale (GOS) score. Mixed-effects linear modeling was used to statistically test differences between the treatment and control groups. Functional outcome and mortality rates were compared using chi-square tests. Results There were no significant differences in demographic characteristics between the 2 groups. In comparison with values in the control group, brain tissue partial pressure of O2 (PO2) levels were significantly increased during and following combined HBO2/NBH treatments in both the noninjured and pericontusional brain (p < 0.0001). Microdialysate lactate/pyruvate ratios were significantly decreased in the noninjured brain in the combined HBO2/NBH group as compared with controls (p < 0.0078). The combined HBO2/NBH group's intracranial pressure values were significantly lower than those of the control group during treatment, and the improvement continued until the next treatment session (p < 0.0006). The combined HBO2/NBH group's levels of microdialysate glycerol were significantly lower than those of the control group in both noninjured and pericontusional brain (p < 0.001). The combined HBO2/NBH group's level of CSF F2-isoprostane was decreased at 6 hours after treatment as compared with that of controls, but the difference did not quite reach statistical significance (p = 0.0692). There was an absolute 26% reduction in mortality for the combined HBO2/NBH group (p = 0.048) and an absolute 36% improvement in favorable outcome using the sliding dichotomized GOS (p = 0.024) as compared with the control group. Conclusions In this Phase II clinical trial, in comparison with standard care (control treatment) combined HBO2/NBH treatments significantly improved markers of oxidative metabolism in relatively uninjured brain as well as pericontusional tissue, reduced intracranial hypertension, and demonstrated improvement in markers of cerebral toxicity. There was significant reduction in mortality and improved favorable outcome as measured by GOS. The combination of HBO2 and NBH therapy appears to have potential therapeutic efficacy as compared with the 2 treatments in isolation. Clinical trial registration no.: NCT00170352 (ClinicalTrials.gov).


2021 ◽  
Author(s):  
Pengzhan Zhao ◽  
Zhongyuan Bao ◽  
Guangchi Sun ◽  
Honglu Chao ◽  
Yiming Tu ◽  
...  

Abstract Background: The microglia-mediated inflammatory response is a vital mechanism of secondary damage following traumatic brain injury (TBI), but its underlying mechanism of microglial activation is unclear. Methods: Controlled cortical impact (CCI) was induced in adult male C57BL/6J mice, and we also used glutamate to construct a classical in vitro injury model in BV2 cell line. The activation of microglia was determined by western blot assessments and immunostaining. The inflammatory factors were determined by ELLSA. The oxidative stress marker and mitochondrial ROS were determined by immunoblotting and MitoSox Red staining. Transmission electron microscopy (TEM) was used to observe a typical morphology of necroptotic cells. Results: Our quantitative proteomics identified 2499 proteins, 157 were significantly differentially expressed between brain tissues at 6 hours after CCI (CCI6h) and sham groups, and 109 were significantly differentially expressed between CCI24h and sham brain tissues. Moreover, compared with sham groups, the terms “acute-phase response”, “inflammation”, and “protein binding” were significantly enriched in CCI groups. Interestingly, fetuin-A, a liver-secreted acute-phase glycoprotein, was involved in these biological processes. Using experimental TBI models, we found that the fetuin-A level peaked at 6 h and then decreased gradually. Importantly, we showed that fetuin-A reduced the cortical lesion volume and edema area and inhibited the inflammatory response, which was associated with suppressing microglial necroptosis, thus decreasing microglial polarization to the M1 phenotype. Furthermore, administration of fetuin-A attenuated mitochondrial oxidative stress in glutamate-treated BV2 cells, which is a critical mechanism of necroptosis suppression. In addition, we demonstrated that fetuin-A treatment promoted translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus in vivo; however, the Nrf-2 inhibitor ML385 and si-heme oxygenase-1 (HO-1) disrupted the regulation of oxidative stress by fetuin-A and induced increased ROS levels and necroptosis in glutamate-treated BV2 cells. Interestingly, the mechanism of fetuin-A in BV2 cells also protects neurons from adverse factors in co-culture assays.Conclusions: Our results demonstrate that fetuin-A activates Nrf-2/HO-1, suppresses oxidative stress and necroptosis levels, and thereby attenuates the abnormal inflammatory response following TBI, providing a potential therapeutic strategy for TBI treatment.


Sign in / Sign up

Export Citation Format

Share Document