Biofeedback and relaxation techniques improve running economy in sub-elite long distance runners

1999 ◽  
Vol 31 (5) ◽  
pp. 717-722 ◽  
Author(s):  
SARAH JANE CAIRD ◽  
ALEXANDER DUNCAN McKENZIE ◽  
GORDON GRANT SLEIVERT
2019 ◽  
Vol 32 ◽  
Author(s):  
Karina Azevedo Lopes ◽  
Mayara Maciel Batista ◽  
Letícia Martins ◽  
André Luiz Kiihn ◽  
Marcos Roberto Queiroga ◽  
...  

Abstract Introduction: Some authors have described the importance of physiological intensity in the behavior of the biomechanical aspects of running (for example, subtalar pronation), but the complex relationships between these variables are not yet well understood. Objective: This study investigated the influence of positive gradients on internal mechanical work (Wint) and maximum subtalar pronation at a submaximal running speed. Method: Sixteen male, trained long-distance runners (age: 29 ± 7 yr; stature: 1.72 ± 0.07 m; body mass: 72.1 ± 10.6 kg), performed four running economy tests (gradients: +1%, +5%, +10% and +15%, respectively) for four minutes at a same submaximal running speed to quantify the maximum values of subtalar pronation and predict the Wint values. Data were analyzed using descriptive statistics, Student’s T-test, and one-way repeated-measures (ANOVA) along with the Statistical Package for the Social Sciences (SPSS) version 20.0. Results: Wint increased according to the gradient (p < 0.05). However, no significant differences were observed in the maximum values of maximum subtalar pronation corresponding to each gradient. Conclusion: Results show the maximum subtalar pronation during submaximal running depends on the speed rather than intensity of effort.


2020 ◽  
Vol 15 (1) ◽  
pp. 141-145
Author(s):  
Ryo Yamanaka ◽  
Hayato Ohnuma ◽  
Ryosuke Ando ◽  
Fumiya Tanji ◽  
Toshiyuki Ohya ◽  
...  

Purpose: Increases in maximal oxygen uptake () and running economy improve performance in long-distance runners. Nevertheless, long-distance runners require sprinting ability to win, especially in the final phase of competitions. The authors determined the relationships between performance and sprinting ability, as well as other abilities in elite long-distance runners. Methods: The subjects were 12 elite long-distance runners. Mean official seasonal best times in 5000-m (5000 m-SB) and 10,000-m (10,000 m-SB) races within 1 year before or after the examination were 13:58.5 (0:18.7) and 28:37.9 (0:25.2) (mean [SD]), respectively. The authors measured 100-m and 400-m sprint times as the index of sprinting ability. They also measured and running economy ( at 300 m·min−1 of running velocity). They used a single correlation analysis to assess relationships between 5000 m-SB or 10,000 m-SB and other elements. Results: There were significant correlations between 5000 m-SB was significantly correlated with 100-m sprint time (13.3 [0.7] s; r = .68, P = .014), 400-m sprint time (56.6 [2.7] s; r = .69, P = .013), and running economy (55.5 [3.9] mL·kg−1·min−1; r = .59, P = .045). There were significant correlations between 10,000 m-SB and 100-m sprint time (r = .72, P = .009) and 400-m sprint time (r = .85, P < .001). However, there was no significant correlation between 5000 m-SB or 10,000 m-SB and (72.0 [3.8] mL·kg−1·min−1). Conclusions: The authors' data suggest that sprinting ability is an important indicator of performance in elite long-distance runners.


2019 ◽  
Vol 33 (7) ◽  
pp. 1921-1928 ◽  
Author(s):  
Federico Pizzuto ◽  
Camila Fonseca de Oliveira ◽  
Tania Socorro Amorim Soares ◽  
Vincenzo Rago ◽  
Gustavo Silva ◽  
...  

2006 ◽  
Vol 20 (4) ◽  
pp. 947-954 ◽  
Author(s):  
PHILO U. SAUNDERS ◽  
RICHARD D. TELFORD ◽  
DAVID B. PYNE ◽  
ESA M. PELTOLA ◽  
ROSS B. CUNNINGHAM ◽  
...  

2006 ◽  
Vol 20 (4) ◽  
pp. 947 ◽  
Author(s):  
Philo U. Saunders ◽  
Richard D. Telford ◽  
David B. Pyne ◽  
Esa M. Peltola ◽  
Ross B. Cunningham ◽  
...  

1993 ◽  
Vol 75 (4) ◽  
pp. 1822-1827 ◽  
Author(s):  
P. Coetzer ◽  
T. D. Noakes ◽  
B. Sanders ◽  
M. I. Lambert ◽  
A. N. Bosch ◽  
...  

Black athletes currently dominate long-distance running events in South Africa. In an attempt to explain an apparently superior running ability of black South African athletes at distances > 3 km, we compared physiological measurements in the fastest 9 white and 11 black South African middle-to long-distance runners. Whereas both groups ran at a similar percentage of maximal O2 uptake (%VO2max) over 1.65#x2013;5 km, the %VO2max sustained by black athletes was greater than that of white athletes at distances > 5 km (P < 0.001). Although both groups had similar training volumes, black athletes reported that they completed more exercise at > 80% VO2max (36 +/- 18 vs. 14 +/- 7%: P < 0.005). When corrections were made for the black athletes' smaller body mass, their superior ability to sustain a high %VO2max could not be explained by any differences in VO2max, maximal ventilation, or submaximal running economy. Superior distance running performance of the black athletes was not due to a greater (+/- 50%) percentage of type I fibers but was associated with lower blood lactate concentrations during exercise. Time to fatigue during repetitive isometric muscle contractions was also longer in black runners (169 +/- 65 vs. 97 +/- 69 s; P < 0.05), but whether this observation explains the superior endurance or was due to the lower peak muscle strength (46.3 +/- 10.3 vs. 67.5 +/- 18.0 Nm/l lean thigh volume; P < 0.01) remains to be established.


2020 ◽  
Vol 16 (2) ◽  
pp. 107-112 ◽  
Author(s):  
B.N. Bozzini ◽  
J.K. Pellegrino ◽  
A.J. Walker ◽  
B.A. McFadden ◽  
A.N. Poyssick ◽  
...  

Specific physiological attributes such as maximal oxygen consumption (VO2max) and running economy (RE) have been suggested to help predict long distance performance in endurance athletes. Despite this, investigations of RE have yielded conflicting results, particularly when comparing elite and recreational runners. The purpose of this study was to illustrate correlations between RE, expressed as submaximal oxygen consumption at a given speed, and time trial (TT) performance in addition to various fitness markers in endurance-trained individuals. Trained distance runners (n=21) performed a battery of tests over three sessions to provide measurements of RE at 2.68 m/s (RE2.68) and 4.25 m/s (RE4.25), TT performance, VO2max, velocity at ventilatory threshold (VVT), and body composition. Pearson-product moment correlations, defined as weak (r≥0.25), moderate (r≥0.45), and strong (r≥0.65), were calculated among all measures and significance was set at P<0.05. The findings suggested that faster TT performance was significantly (P<0.05) correlated to a higher VO2max (r=-0.86) and lower body fat percentage (BF%; r=0.78). However, TT performance displayed only a weak trend to RE4.25 (r=-0.40, P=0.07) and was not correlated to RE2.68 (r=0.15; P>0.05). Additionally, better RE4.25 (i.e. decreased submaximal oxygen consumption) was associated with a lower VO2max (r=0.66, P<0.05) and an increased BF% (r=-0.46, P<0.05). RE2.68 revealed no significant relationships with these measures. Comparable to their elite counterparts, higher aerobic capacity is strongly linked to performance in recreational distance runners, though in this cohort RE only weakly related to performance at the faster velocity. Finally, the inverse relationship between markers of overall fitness and RE suggests that enhanced RE may be an adaptive response to a limited physiological capacity in this population.


Sign in / Sign up

Export Citation Format

Share Document