Three-dimensional Visualization of the Pyramidal Tract in a Neuronavigation System during Brain Tumor Surgery: First Experiences and Technical Note

Neurosurgery ◽  
2001 ◽  
Vol 49 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Volker A. Coenen ◽  
Timo Krings ◽  
Lothar Mayfrank ◽  
Richard S. Polin ◽  
Marcus H.T. Reinges ◽  
...  

Abstract OBJECTIVE To integrate spatial three-dimensional information concerning the pyramidal tracts into a customized system for frameless neuronavigation during brain tumor surgery. METHODS Four consecutive patients with intracranial tumors in eloquent areas underwent diffusion-weighted and anatomic magnetic resonance imaging studies within 48 hours before surgery. Diffusion-weighted datasets were merged with anatomic data for navigation purposes. The pyramidal tracts were segmented and reconstructed for three-dimensional visualization. The reconstruction results, together with the fused-image dataset, were available during surgery in the environment of a customized neuronavigation system. RESULTS In all four patients, the combination of reconstructed data and fused images was a helpful additional source of information concerning the tumor seat and topographical interaction with the pyramidal tract. In two patients, intraoperative motor cortex stimulation verified the tumor seat with regard to the precentral gyrus. CONCLUSION Diffusion-weighted magnetic resonance imaging allows individual estimation of large fiber tracts applicable as important information in intraoperative neuronavigation and in planning brain tumor resection. A three-dimensional representation of fibers associated with the pyramidal tract during brain tumor surgery is feasible with the presented technique and is a helpful adjunct for the neurosurgeon. The main drawbacks include the length of time required for the segmentation procedure, the lack of direct intraoperative control of the pyramidal tract position, and brain shift. However, mapping of large fiber tracts and its intraoperative use for neuronavigation have the potential to increase the safety of neurosurgical procedures and to reduce surgical morbidity.

Neurosurgery ◽  
2001 ◽  
Vol 49 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Volker A. Coenen ◽  
Timo Krings ◽  
Lothar Mayfrank ◽  
Richard S. Polin ◽  
Marcus H.T. Reinges ◽  
...  

2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi13-vi13
Author(s):  
Yusuke Kobayashi ◽  
Yosuke Satou ◽  
Takashi Kon ◽  
Daisuke Tanioka ◽  
Katsuyoshi Shimizu ◽  
...  

Abstract Although maximal safe resection is the current standard for glioblastoma surgery, its safety and removal rate conflict with each other. Electrophysiological monitoring, such as motor evoked potential monitoring and awake craniotomy, can be utilized as safety measures; not all facilities can perform them. Herein, we present a representative case report on our efforts for a safe malignant brain tumor surgery. Case: A 77-year-old woman with glioblastoma in the premotor cortex presented with seizure of the upper left lower limb. Her pyramidal tract ran from the medial bottom to the posterior of the tumor. We performed excision from the site using the lowest gamma entropy. We then removed all parts of the tumor, with the exception of the pyramidal tract infiltration, and no paralysis was observed. She was definitively diagnosed with glioblastoma and is currently on maintenance chemotherapy. As a preoperative examination, we performed cerebrovascular angiography. We then performed various other tests to ascertain the patient’s condition. Considering lesions that affect language, Wada tests were performed regardless of laterality. For all patients with epilepsy onset, preoperative 256-channel electroencephalogram measurement and intraoperative the gamma entropy analysis were performed to confirm epileptogenicity. Considering lesions that affect eloquence, subdural electrodes were placed and brain function mapping was performed the next day. Based on the results, the safest cortical incision site and excision range were determined, and excision was performed on the following day. Of the 14 operated glioblastoma cases after November 2018, more than 85% of the contrast-enhanced lesions were completely removed in 7 cases, partially removed in 5 cases, and underwent biopsy in 2 cases. Postoperative Karnofsky performance status scores remained unchanged in 11 cases, improved in 1 case, and deteriorated in 2 cases. Our efforts have resulted in safe and sufficient removal of malignant brain tumors during surgery.


2006 ◽  
Vol 49 (4) ◽  
pp. 210-215 ◽  
Author(s):  
T.-Y. Jung ◽  
S. Jung ◽  
I.-Y. Kim ◽  
S.-J. Park ◽  
S.-S. Kang ◽  
...  

2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

2019 ◽  
Author(s):  
Estela Val Jordan ◽  
Agustín Nebra Puertas ◽  
Juan Casado Pellejero ◽  
Maria Dolores Vicente Gordo ◽  
Concepción Revilla López ◽  
...  

Author(s):  
Gennadiy A. Katsevman ◽  
Walter Greenleaf ◽  
Ricardo García-García ◽  
Maria Victoria Perea ◽  
Valentina Ladera ◽  
...  

2020 ◽  
Vol 2 (Supplement_3) ◽  
pp. ii2-ii2
Author(s):  
Tatsuya Abe

Abstract It is reported that the development of new perioperative motor deficits was associated with decreased overall survival despite similar extent of resection and adjuvant therapy. The maximum safe resection without any neurological deficits is required to improve overall survival in patients with brain tumor. Surgery is performed with various modalities, such as neuro-monitoring, photodynamic diagnosis, neuro-navigation, awake craniotomy, intraoperative MRI, and so on. Above all, awake craniotomy technique is now the standard procedure to achieve the maximum safe resection in patients with brain tumor. It is well known that before any treatment, gliomas generate globally (and not only focally) altered functional connectomics profiles, with various patterns of neural reorganization allowing different levels of cognitive compensation. Therefore, perioperative cortical mapping and elucidation of functional network, neuroplasticity and reorganization are important for brain tumor surgery. On the other hand, recent studies have proposed several gene signatures as biomarkers for different grades of gliomas from various perspectives. Then, we aimed to identify these biomarkers in pre-operative and/or intra-operative periods, using liquid biopsy, immunostaining and various PCR methods including rapid genotyping assay. In this presentation, we would like to demonstrate our surgical strategy based on molecular and functional connectomics profiles.


2021 ◽  
Vol 201 ◽  
pp. 106420
Author(s):  
Mayla Santana Correia ◽  
Iuri Santana Neville ◽  
Cesar Cimonari de Almeida ◽  
Cintya Yukie Hayashi ◽  
Luana Talita Diniz Ferreira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document