Some Preliminary Observations on the Effects of Cations on Conduction Processes in the Abdominal Nerve Cord of the Stick Insect, Carausius Morosus

1965 ◽  
Vol 42 (1) ◽  
pp. 1-6
Author(s):  
J. E. TREHERNE

1. In the haemolymph of the stick insect Carausius morosus the concentration of potassium exceeds that of sodium and the concentration of magnesium exceeds that of calcium. The implications of this situation for nerve conduction have been studied. 2. Conduction is maintained in intact and desheathed preparations of the fourth adbominal ganglion under irrigation with a solution resembling haemolymph in ionic composition. 3. Action potentials recorded in response to electrical stimulation of the nerve cord decline in sodium-free solutions, both in intact and in desheathed preparations. 4. Conduction declines slowly under irrigation with magnesium-free solutions both in intact and in desheathed preparations.

1984 ◽  
Vol 111 (1) ◽  
pp. 191-199
Author(s):  
U. BÄSSLER

Autotomized legs of the stick insect Cuniculina impigra bend rapidly and rhythmically at the femur-tibia joint. These flexions occur at a frequency 1–6 Hz immediately after autotomy and decrease in frequency and amplitude with time. Each flexion is produced by a burst of 1–14 action potentials in a single motor axon of the flexor tibiae muscle (bursting axon). These rhythmic discharges are generated in a very restricted part of the crural nerve, which contains the bursting axon, close to the autotomy point and appear whenever the nerve is cut in the immediate vicinity of this generator region. Rhythmic flexion can also be elicited by electrical stimulation of the crural nerve. The bursting axon is of small diameter. It innervates all or most of flexor tibiae muscle in which it produces relatively large EPSPs. Each EPSP elicits one muscle twitch. These fuse into a brief tetanus, whose amplitude is proportional to the number of spikes in a burst. Each tetanus produces one flexion. This behaviour does not occur in the autotomized legs of several related species.


1970 ◽  
Vol 52 (3) ◽  
pp. 593-601
Author(s):  
K. J. FRIEDMAN ◽  
A. D. CARLSON

1. The study of insect curarization in the cockroach, Periplaneta americana, has been continued. The application of curare solution (0.032 M dTC) to the nerve cord produced blockage of action-potential conduction in the giant fibres lying within the nerve cord. 2. The application of curare solution to the cerci prevented the recording of action potentials from the cercal nerves of the organism. Application of dTC to the cercal nerve-A6 region of the cockroach prevented giant fibres from responding to electrical stimulation of the cercal nerves. These results are interpreted as indicating that curare blocks the conduction of action potentials in the cercal nerve. 3. It is proposed that curare can induce blockage of conduction in sensory, motor and central nervous system fibres. It is further proposed that this blockage of conduction is the mechanism of insect curarization. 4. The results of previous reports concerned with insect curarization are re-interpreted in view of the proposal. Several of the conflicts in these reports are resolved by the proposal that blockage of conduction is the mechanism of insect curarization.


1988 ◽  
Vol 118 (3) ◽  
pp. 471-483 ◽  
Author(s):  
L. M. Voloschin ◽  
E. Décima ◽  
J. H. Tramezzani

ABSTRACT Electrical stimulation of the XIII thoracic nerve (the 'mammary nerve') causes milk ejection and the release of prolactin and other hormones. We have analysed the route of the suckling stimulus at the level of different subgroups of fibres of the teat branch of the XIII thoracic nerve (TBTN), which innervates the nipple and surrounding skin, and assessed the micromorphology of the TBTN in relation to lactation. There were 844 ± 63 and 868 ± 141 (s.e.m.) nerve fibres in the TBTN (85% non-myelinated) in virgin and lactating rats respectively. Non-myelinated fibres were enlarged in lactating rats; the modal value being 0·3–0·4 μm2 for virgin and 0·4–0·5 μm2 for lactating rats (P > 0·001; Kolmogorov–Smirnov test). The modal value for myelinated fibres was 3–6 μm2 in both groups. The compound action potential of the TBTN in response to electrical stimulation showed two early volleys produced by the Aα- and Aδ-subgroups of myelinated fibres (conduction velocity rate of 60 and 14 m/s respectively), and a late third volley originated in non-myelinated fibres ('C') group; conduction velocity rate 1·4 m/s). Before milk ejection the suckling pups caused 'double bursts' of fibre activity in the Aδ fibres of the TBTN. Each 'double burst' consisted of low amplitude action potentials and comprised two multiple discharges (33–37 ms each) separated by a silent period of around 35 ms. The 'double bursts' occurred at a frequency of 3–4/s, were triggered by the stimulation of the nipple and were related to fast cheek movements visible only by watching the pups closely. In contrast, the Aα fibres of the TBTN showed brief bursts of high amplitude potentials before milk ejection. These were triggered by the stimulation of cutaneous receptors during gross slow sucking motions of the pup (jaw movements). Immediately before the triggering of milk ejection the mother was always asleep and a low nerve activity was recorded in the TBTN at this time. When reflex milk ejection occurred, the mother woke and a brisk increase in nerve activity was detected; this decreased when milk ejection was accomplished. In conscious rats the double-burst type of discharges in Aδ fibres was not observed, possibly because this activity cannot be detected by the recording methods currently employed in conscious animals. During milk ejection, action potentials of high amplitude were conveyed in the Aα fibres of the TBTN. During the treading time of the stretch reaction (SR), a brisk increase in activity occurred in larger fibres; during the stretching periods of the SR a burst-type discharge was again observed in slow-conducting afferents; when the pups changed nipple an abrupt increase in activity occurred in larger fibres. In summary, the non-myelinated fibres of the TBTN are increased in diameter during lactation, and the pattern of suckling-evoked nerve activity in myelinated fibres showed that (a) the double burst of Aδ fibres, produced by individual sucks before milk ejection, could be one of the conditions required for the triggering of the reflex, and (b) the nerve activity displayed during milk-ejection action may result, at least in part, from 'non-specific' stimulation of cutaneous receptors. J. Endocr. (1988) 118, 471–483


2001 ◽  
Vol 204 (13) ◽  
pp. 2265-2275 ◽  
Author(s):  
Michael Gebhardt ◽  
Hans-Willi Honegger

SUMMARY We investigated five different descending brain interneurons with dendritic arborizations in the deutocerebrum in the crickets Gryllus bimaculatus and G. campestris. These interneurones convey specific antennal mechanosensory information to the ventral nerve cord and all responded to forced antennal movements. These interneurones coded for velocity and showed preferences for distinct sectors of the total range of antennal movements. Their axons descended into the posterior connective either ipsilateral or contalateral to the cell body. Electrical stimulation of sensory nerves indicated that the interneurons received input from different afferents of the two antennal base segments. One interneuron had a particularly large axon with a conduction velocity of 4.4ms−1. This was the only one of the five interneurons that also received visual input. Its activity was reduced during voluntary antennal movements. The reduction in activity occurred even after de-efferentation of the antenna, indicating that it had a central origin. Although we do not have experimental evidence for behavioural roles for the descending antennal mechanosensory interneurons, the properties described here suggest an involvement in the perception of objects in the path of the cricket.


1981 ◽  
Vol 93 (1) ◽  
pp. 257-267 ◽  
Author(s):  
FRANCES M. ASHCROFT

The ionic requirements for the generation of action potentials in the ventral longitudinal muscle fibres of the stick insect, Carausius morosus, were investigated. Ca-free Ringer rapidly and reversibly abolished the action potential. In the presence of tetraethylammonium (TEA) ions (to suppress outward currents) the overshoot of the action potential changed 26 mV for a 10-fold change in [Ca]o. The maximum rate of rise of the action potential (measured in TEA Ringer) showed saturation at high [Ca]o. Cobaltous ions (20 mM) and the organic Ca antagonist D 600 (5×10−4g/ml) reversibly inhibited the action potential; the inhibitory effect of 1 mM-La3+ was irreversible. Barium and strontium, but not magnesium, were able to substitute for calcium as charge carriers. These results suggest that an inward movement of Ca2+ underlies the action potential of Carausius fibres.


2005 ◽  
Vol 22 (2) ◽  
pp. 227-243 ◽  
Author(s):  
Tatiana Y. Kostrominova ◽  
Douglas E. Dow ◽  
Robert G. Dennis ◽  
Richard A. Miller ◽  
John A. Faulkner

Loss of innervation in skeletal muscles leads to degeneration, atrophy, and loss of force. These dramatic changes are reflected in modifications of the mRNA expression of a large number of genes. Our goal was to clarify the broad spectrum of molecular events associated with long-term denervation of skeletal muscles. A microarray study compared gene expression profiles of 2-mo denervated and control extensor digitorum longus (EDL) muscles from 6-mo-old rats. The study identified 121 genes with increased and 7 genes with decreased mRNA expression. The expression of 107 of these genes had not been identified previously as changed after denervation. Many of the genes identified were genes that are highly expressed in skeletal muscles during embryonic development, downregulated in adults, and upregulated after denervation of muscle fibers. Electrical stimulation of denervated muscles preserved muscle mass and maximal force at levels similar to those in the control muscles. To understand the processes underlying the effect of electrical stimulation on denervated skeletal muscles, mRNA and protein expression of a number of genes, identified by the microarray study, was compared. The hypothesis was that loss of nerve action potentials and muscle contractions after denervation play the major roles in upregulation of gene expression in skeletal muscles. With electrical stimulation of denervated muscles, the expression levels for these genes were significantly downregulated, consistent with the hypothesis that loss of action potentials and/or contractions contribute to the alterations in gene expression in denervated skeletal muscles.


Spine ◽  
2000 ◽  
Vol 25 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Yuzuru Takahashi ◽  
Jiro Hirayama ◽  
Yoshio Nakajima ◽  
Seiji Ohtori ◽  
Kazuhisa Takahashi

1983 ◽  
Vol 107 (1) ◽  
pp. 21-47 ◽  
Author(s):  
C.J.H. ELLIOTT

(1) Hairs in the subcostal hair plates of the wings of crickets have a high angular stiffness (5.5μNm rad1) when bent about their base. The mean threshold required to elicit action potentials is 15°. Viscous drag from air movements will not deflect the hairs sufficiently to excite them; this will only occur when the hair is bent by the opposite wing. (2) The hair sensillae project to the ventral association area of the mesothoracic ganglion, but the endings of the stridulatory motor neurones are all in dorsal or lateral neuropiles of the thoracic ganglia. (3) Electrical stimulation of the hair plates evokes reliable EPSPs in opener (M99), closer (M90) and wing folding (M85) motor neurones, after latencies of 4–20 ms, depending on the neurone. Properties of the hairs and motor neurones suggest that these EPSPs in the wing folding muscle (M85) and closer (M90) could play an important role in the control of wing position seen in recent behavioural study.


1972 ◽  
Vol 56 (1) ◽  
pp. 129-137
Author(s):  
J. E. TREHERNE

1. The effects of variation in the sodium concentration of the bathing media on axonal function has been measured in de-sheathed connectives in the presence of the overlying neural fat-body sheath. 2. The response to solutions of the same sodium concentration as the haemolymph (15 mM/1) was found to be essentially similar to that recorded in de-sheathed connectives in the absence of the fat-body sheath, there being a rapid decline in amplitude of the recorded action potentials in both preparations. 3. On the basis of these observations it is concluded that the neural fat-body sheath is unlikely to be involved in the regulation of the extra-neuronal sodium level.


1972 ◽  
Vol 56 (3) ◽  
pp. 717-734
Author(s):  
Y. PICHON ◽  
D. B. SATTELLE ◽  
N. J. LANE

1. Connectives of the ventral nerve cord of Manduca sexta consist of glia-ensheathed axons surrounded by a perineuriurn and an acellular neural lamella, which is greatly expanded on the dorsal surface. The glial cells are linked to one another by desmosomea and tight junctions; the latter also occur between adjacent perineurial cells. There no continuous circum-neural fat-body sheath. 2. A ten-fold change in the external potassium concentration results in a 43 mV change in the resting potential of de-sheathed connectives. Action potentials of such exposed axons are rapidly blocked in low-sodium or sodium-free saline and under these conditions neither calcium nor magnesium is able to maintain conduction. Spikes from de-sheathed preparations are rapidly abolished on exposure to 10-6M tetrodotoxin. These iindmgs indicate a conventional ionic basis of excitation for the axonal membrane of this insect. 3. Analyses of the haemolymph reveal a mean sodium concentration of 25.4 (s.E. ± 0.98) mM/1 and a mean potassium concentration of 25.1 (s.E. ± 1.74) mM/.1 4. Action potentials recorded from sheathed connectives are maintained for extended periods in sodium-free saline. 5. Exposure of most sheathed connectives to elevated potassium concentrations results in a two-stage depolarization. A rapid, single-stage, apparently extraneuronal potential change is, however, observed in some preparations. 6. These results on sheathed connectives indicate the presence of some peripheral barrier to the movements of sodium and potassium; the tight junctions between adjacent perineurial cells are considered to be possible sites of this restriction.


Sign in / Sign up

Export Citation Format

Share Document