A Method to Simulate In Vivo Cervical Spine Kinematics Using In Vitro Compressive Preload

Spine ◽  
2002 ◽  
Vol 27 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Takehiko Miura ◽  
Manohar M. Panjabi ◽  
Peter A. Cripton
2019 ◽  
Vol 87 ◽  
pp. 107-113 ◽  
Author(s):  
Kevin M. Bell ◽  
Richard E. Debski ◽  
Gwendolyn A. Sowa ◽  
James D. Kang ◽  
Scott Tashman

Author(s):  
Mozammil Hussain ◽  
Raghu N. Natarajan ◽  
Gunnar B. J. Andersson ◽  
Howard S. An

Degenerative changes in the cervical spine due to aging are very common causes of neck pain in general population. Although many investigators have quantified the gross morphological changes in the disc with progressive degeneration, the biomechanical changes due to degenerative pathologies of the disc and its effect on the adjacent levels are not well understood. Despite many in vivo and in vitro techniques used to study such complex phenomena, the finite element (FE) method is still a powerful tool to investigate the internal mechanics and complex clinical situations under various physiological loadings particularly when large numbers of parameters are involved. The objective of the present study was to develop and validate a poroelastic FE model of a healthy C3-T1 segment of the cervical spine under physiologic moment loads. The model included the regional effect of change in the fixed charged density of proteoglycan concentration and change in the permeability and porosity due to change in the axial strain of disc tissues. The model was further modified to include various degrees of disc degeneration at the C5-C6 level. Outcomes of this study provided a better understanding on the progression of degeneration along the cervical spine by investigating the biomechanical response of the adjacent segments with an intermediate degenerated C5-C6 level.


Author(s):  
M. C Korinth ◽  
T Hero ◽  
A. H Mahnken ◽  
C Ragoß ◽  
K Scherer

AbstractZur Beurteilung des radiologischen, biomechanischen und histologischen Einwachsverhaltens neuer Materialien, Implantate und Cages für die zervikale interkorporelle Fusion, bieten sich Tiermodelle und hier insbesondere das Schafs-Halswirbelsäulenmodell an.In biomechanischen In-vitro-Versuchen an humanen Kadaver-Halswirbelsäulen wurden erste Erfahrungen hinsichtlich Primärstabilität eines Cage aus einer neuartigen, porösen TiOZur entsprechenden In-vivo-Beurteilung fusionierten wir 10 Schafs-Halswirbelsäulen in den Höhen C2/3 und C4/5 jeweils mit PMMA und einem Ecopore-Keramik-Cage und führten nativradiologische, sowie computertomographische Verlaufsuntersuchungen direkt post-operativ und alle 4 Wochen in den folgenden 2 bzw. 4 Monaten durch. Neben der Etablierung des Tiermodells, wurden die radiologischen Veränderungen im Verlauf und die Fusion der operierten Segmente analysiert. Darüberhinaus wurden Messungen der entsprechenden Bandscheibenfachhöhen (DSH) und Intervertebralwinkel (IVA) durchgeführt und verglichen.Nach Einbringen der Implantate in die Bandscheibenfächer nahm zunächst in beiden Gruppen die mittlere Bandscheibenfachhöhe und der Intervertebralwinkel zu (34,8%; 53,9%). In den folgenden Monaten verringerte sich die Bandscheibenfachhöhe nicht signifikant, deutlicher nach Ecopore-Fusion als nach PMMA-Interposition bis auf Werte unterhalb der Ausgangswerte. Ebenso nahm der Intervertebralwinkel im postoperativen Verlauf, deutlicher in der Ecopore-Gruppe als in der PMMA-Gruppe, ab (p < 0,05). Diese Veränderungen im Sinne einer Einsinterung der Implantate, konnte in den radiologischen Verlaufskontrollen morphologisch bestätigt werden. Die radiologisch beurteilbare Fusion, d.h. solide knöcherne Überbauung des operierten Segments, war nach Implantation eines Ecopore-Cage ausgeprägter (83%) als nach PMMA-Interposition (50%) (nicht statistisch signifikant).In diesem ersten Teil unserer In-vivo-Untersuchungen zu dem Einsatz des neuartigen Cage-Materials wurde die Anwendung im Spondylodesemodell der Schafs-Halswirbelsäule aufgezeigt. Es zeigten sich radiologische Unterschiede, in Bezug auf die ausgeprägtere Einsinterung des Ecopore-Cage und die deutlichere, nachweisbare Fusion des mit dem neuen Material operierten Segments. In dem ersten Teil dieser Studie wurden die radiologischen Veränderungen der fusionierten Segmente über mehrere Monate dargestellt und morphologisch analysiert, bevor die biomechanischen Analysen und Vergleiche in einem weiteren Teil präsentiert werden sollen. Animals are becoming more and more common as in vitro and in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion.In preceding biomechanical in vitro examination human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiOImmediately after placement of both implants in the disc spaces the mean DSH and IVA increased (34.8% and 53.9%, respectively). During the following months DSH decreased to a greater extent in the Ecopore-segments than in the PMMA-segments, even to a value below the initial value (p > 0,05). Similarly, the IVA decreased in both groups in the postoperative time lapse, but more distinct in the Ecopore-segments (p < 0,05). These changes in terms of a subsidence of the implants, were confirmed morphologically in the radiological examination in the course. The radiologically evaluated fusion, i.e. bony bridging of the operated segments, was more pronounced after implantation of an Ecopore-cage (83%), than after PMMA interposition (50%), but did not gain statistical significance.In this first in vivo examination of our new porous ceramic bone replacement material we showed its application in the spondylodesis model of the sheep cervical spine. Distinct radiological changes regarding evident subsidence and detectable fusion of the segments, operated on with the new biomaterial, were seen. We demonstrated the radiological changes of the fused segments during several months and analysed them morphologically, before the biomechanical evaluation will be presented in a subsequent publication.


2014 ◽  
Vol 14 (7) ◽  
pp. 1221-1227 ◽  
Author(s):  
William J. Anderst ◽  
William F. Donaldson ◽  
Joon Y. Lee ◽  
James D. Kang

Author(s):  
Colin P. McDonald ◽  
Sukhinder K. Bilkhu ◽  
Victor Chang ◽  
Casey Bachison ◽  
Stephen W. Bartol ◽  
...  

Degenerative disc disease (DDD) of the cervical spine is a common condition that causes significant pain and disability. Treatment for DDD in 2000 exceeded 110,000 patients in the United States alone [1]. A common treatment option for patients involves removal of the degenerated disc and fusion of the adjacent vertebral bodies. However, previous research has shown that as many as 25–92% of patients treated with fusion have disc degeneration at the adjacent levels within 10 years after surgery [2,3]. It has been hypothesized that this is the result of a change in adjacent vertebral segment motion [4]. However, it is unknown if spinal fusion alters motion at these segments. Thus, the objective of this study was to compare the dynamic, three-dimensional (3D) motion of the cervical spine in normal control subjects and spinal fusion patients.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Yuancan Huang ◽  
Shuai Li ◽  
Minshan Feng ◽  
Liguo Zhu

Rotation-traction (RT) manipulation is a commonly used physical therapy procedure in TCM (traditional Chinese medicine) for cervical spondylosis. This procedure temporarily separates the C3 and C4 cervical vertebrae from each other when a physician applies a jerky action while the neck is voluntarily turned by the patient to a specific position as instructed by the physician, where the cervical vertebrae are twisted and locked. However, a high rate of cervical injury occurs due to inexperienced physician interns who lack sufficient training. Therefore, we developed a cervical spine mechanism that imitates the dynamic behaviours of the human neck during RT manipulation. First, in vivo and in vitro experiments were performed to acquire the biomechanical feature curves of the human neck during RT manipulation. Second, a mass-spring-damper system with an electromagnetic clutch was designed to emulate the entire dynamic response of the human neck. In this system, a spring is designed as rectilinear and nonlinear to capture the viscoelasticity of soft tissues, and an electromagnetic clutch is used to simulate the sudden disengagement of the cervical vertebrae. Test results show that the mechanism can exhibit the desired behaviour when RT manipulation is applied in the same manner as on humans.


2021 ◽  
pp. 110872
Author(s):  
Ana I. LORENTE ◽  
César HIDALGO-GARCÍA ◽  
Pablo FANLO-MAZAS ◽  
Jacobo RODRÍGUEZ-SANZ ◽  
Carlos LÓPEZ-de-CELIS ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
pp. 515-524 ◽  
Author(s):  
René Jonas ◽  
Robert Demmelmaier ◽  
Steffen P. Hacker ◽  
Hans-Joachim Wilke

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
William J. Anderst ◽  
William F. Donaldson ◽  
Joon Y. Lee ◽  
James D. Kang

The effects of degeneration and surgery on cervical spine mechanics are commonly evaluated through in vitro testing and finite element models derived from these tests. The objectives of the current study were to estimate the load applied to the C2 vertebra during in vivo functional flexion-extension and to evaluate the effects of anterior cervical arthrodesis on spine kinetics. Spine and head kinematics from 16 subjects (six arthrodesis patients and ten asymptomatic controls) were determined during functional flexion-extension using dynamic stereo X-ray and conventional reflective markers. Subject-specific inverse dynamics models, including three flexor muscles and four extensor muscles attached to the skull, estimated the force applied to C2. Total force applied to C2 was not significantly different between arthrodesis and control groups at any 10 deg increment of head flexion-extension (all p values ≥ 0.937). Forces applied to C2 were smallest in the neutral position, increased slowly with flexion, and increased rapidly with extension. Muscle moment arms changed significantly during flexion-extension, and were dependent upon the direction of head motion. The results suggest that in vitro protocols and finite element models that apply constant loads to C2 do not accurately represent in vivo cervical spine kinetics.


1999 ◽  
Author(s):  
Jonathan L. Sakai ◽  
Lars G. Gilbertson ◽  
Louis E. DeFrate ◽  
William F. Donaldson ◽  
James D. Kang ◽  
...  

Abstract The current study investigated the efficacy of virtual reality (VR) assisted visual feedback for improving control of voluntary movements of the cervical spine during performance of active range-of-motion maneuvers. Active range-of-motion was assessed in 10 asymptomatic volunteers, both without and with VR-assisted visual feedback of overall cervical spine rotations. 8 of the 12 secondary rotations were significantly lower (p &lt; 0.01) with VR feedback than the corresponding secondary rotations without VR feedback. No statistically significant differences were found between the primary rotations attained without VR and with VR feedback. These results support the use of VR-based visual feedback for enabling control of in-vivo cervical spine kinematics.


Sign in / Sign up

Export Citation Format

Share Document