scholarly journals Continuous cervical spine kinematics during in vivo dynamic flexion-extension

2014 ◽  
Vol 14 (7) ◽  
pp. 1221-1227 ◽  
Author(s):  
William J. Anderst ◽  
William F. Donaldson ◽  
Joon Y. Lee ◽  
James D. Kang
Author(s):  
William J. Anderst ◽  
Thomas P. Lacek ◽  
William F. Donaldson ◽  
Joon Y. Lee ◽  
James D. Kang

Cervical disc degeneration is a common and potentially debilitating disease. Over 100,000 surgical procedures are performed per year in the US to treat degenerative cervical spines1. However, the in vivo kinematics and arthrokinematics of the cervical spine have yet to be adequately characterized due to the inability to precisely track vertebral movement during dynamic motion. We have recently established the validity of a set of tools, including a biplane x-ray system, a model-based tracking technique and custom software, to precisely measure in vivo cervical spine kinematics and arthrokinematics with sub-millimeter accuracy2. Consequently, we can now begin to investigate the interdependent relationship between cervical vertebral kinematics and disc morphology and mechanical properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zongmiao Wan ◽  
Wenjin Wang ◽  
Chao Li ◽  
Junjie Li ◽  
Jinpeng Lin ◽  
...  

AbstractTo validate the accuracy of Cone beam computed tomography (CBCT) cervical spine modeling with three dimensional (3D)-3D registration for in vivo measurements of cervical spine kinematics. CBCT model accuracy was validated by superimposition with computed tomography (CT) models in 10 healthy young adults, and then cervical vertebrae were registered in six end positions of functional movements, versus a neutral position, in 5 healthy young adults. Registration errors and six degrees of freedom (6-DOF) kinematics were calculated and reported. Relative to CT models, mean deviations of the CBCT models were < 0.6 mm. Mean registration errors between end positions and the reference neutral position were < 0.7 mm. During flexion–extension (F–E), the translation in the three directions was small, mostly < 1 mm, with coupled LB and AR both < 1°. During lateral bending (LB), the bending was distributed roughly evenly, with coupled axial rotation (AR) opposite to the LB at C1–C2, and minimal coupled F–E. During AR, most of the rotation occurred in the C1–C2 segment (29.93 ± 7.19° in left twist and 31.38 ± 8.49° in right twist) and coupled LB was observed in the direction opposite to that of the AR. Model matching demonstrated submillimeter accuracy in cervical spine kinematics data. The presently evaluated low-radiation-dose CBCT technique can be used to measure 3D spine kinematics in vivo across functional F–E, AR, and LB positions, which has been especially challenging for the upper cervical spine.


2015 ◽  
Vol 15 (10) ◽  
pp. S183-S184
Author(s):  
Sean J. Driscoll ◽  
Haiqing Mao ◽  
Shaobai Wang ◽  
Weiye Zhong ◽  
Guoan Li ◽  
...  

Author(s):  
Colin P. McDonald ◽  
Sukhinder K. Bilkhu ◽  
Victor Chang ◽  
Casey Bachison ◽  
Stephen W. Bartol ◽  
...  

Degenerative disc disease (DDD) of the cervical spine is a common condition that causes significant pain and disability. Treatment for DDD in 2000 exceeded 110,000 patients in the United States alone [1]. A common treatment option for patients involves removal of the degenerated disc and fusion of the adjacent vertebral bodies. However, previous research has shown that as many as 25–92% of patients treated with fusion have disc degeneration at the adjacent levels within 10 years after surgery [2,3]. It has been hypothesized that this is the result of a change in adjacent vertebral segment motion [4]. However, it is unknown if spinal fusion alters motion at these segments. Thus, the objective of this study was to compare the dynamic, three-dimensional (3D) motion of the cervical spine in normal control subjects and spinal fusion patients.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Yan Yu ◽  
Haiqing Mao ◽  
Jing-Sheng Li ◽  
Tsung-Yuan Tsai ◽  
Liming Cheng ◽  
...  

While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
William J. Anderst ◽  
William F. Donaldson ◽  
Joon Y. Lee ◽  
James D. Kang

The effects of degeneration and surgery on cervical spine mechanics are commonly evaluated through in vitro testing and finite element models derived from these tests. The objectives of the current study were to estimate the load applied to the C2 vertebra during in vivo functional flexion-extension and to evaluate the effects of anterior cervical arthrodesis on spine kinetics. Spine and head kinematics from 16 subjects (six arthrodesis patients and ten asymptomatic controls) were determined during functional flexion-extension using dynamic stereo X-ray and conventional reflective markers. Subject-specific inverse dynamics models, including three flexor muscles and four extensor muscles attached to the skull, estimated the force applied to C2. Total force applied to C2 was not significantly different between arthrodesis and control groups at any 10 deg increment of head flexion-extension (all p values ≥ 0.937). Forces applied to C2 were smallest in the neutral position, increased slowly with flexion, and increased rapidly with extension. Muscle moment arms changed significantly during flexion-extension, and were dependent upon the direction of head motion. The results suggest that in vitro protocols and finite element models that apply constant loads to C2 do not accurately represent in vivo cervical spine kinetics.


Spine ◽  
2002 ◽  
Vol 27 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Takehiko Miura ◽  
Manohar M. Panjabi ◽  
Peter A. Cripton

2014 ◽  
Vol 21 (3) ◽  
pp. 417-424 ◽  
Author(s):  
Yukitaka Nagamoto ◽  
Motoki Iwasaki ◽  
Tsuyoshi Sugiura ◽  
Takahito Fujimori ◽  
Yohei Matsuo ◽  
...  

Object Cervical laminoplasty is an effective procedure for decompressing the spinal cord at multiple levels, but restriction of neck motion is one of the well-known complications of the procedure. Although many authors have reported on cervical range of motion (ROM) after laminoplasty, they have focused mainly on 2D flexion and extension on lateral radiographs, not on 3D motion (including coupled motion) nor on precise intervertebral motion. The purpose of this study was to clarify the 3D kinematic changes in the cervical spine after laminoplasty performed to treat cervical spondylotic myelopathy. Methods Eleven consecutive patients (6 men and 5 women, mean age 68.1 years, age range 57–79 years) with cervical spondylotic myelopathy who had undergone laminoplasty were included in the study. All patients underwent 3D CT of the cervical spine in 5 positions (neutral, 45° head rotation left and right, maximum head flexion, and maximum head extension) using supporting devices. The scans were performed preoperatively and at 6 months after laminoplasty. Segmental ROM from Oc–C1 to C7–T1 was calculated both in flexion-extension and in rotation, using a voxel-based registration method. Results Mean C2–7 flexion-extension ROM, equivalent to cervical ROM in all previous studies, was 45.5° ± 7.1° preoperatively and 35.5° ± 8.2° postoperatively, which was a statistically significant 33% decrease. However, mean Oc–T1 flexion-extension ROM, which represented total cervical ROM, was 71.5° ± 8.3° preoperatively and 66.5° ± 8.3° postoperatively, an insignificant 7.0% decrease. In focusing on each motion segment, the authors observed a statistically significant 22.6% decrease in mean segmental ROM at the operated levels during flexion-extension and a statistically insignificant 10.2% decrease during rotation. The most significant decrease was observed at C2–3. Segmental ROM at C2–3 decreased 24.2% during flexion-extension and 21.8% during rotation. However, a statistically insignificant 37.2% increase was observed at the upper cervical spine (Oc–C2) during flexion-extension. The coupling pattern during rotation did not change significantly after laminoplasty. Conclusions In this first accurate documentation of 3D segmental kinematic changes after laminoplasty, Oc–T1 ROM, which represented total cervical ROM, did not change significantly during either flexion-extension or rotation by 6 months after laminoplasty despite a significant decrease in C2–7 flexion-extension ROM. This is thought to be partially because of a compensatory increase in segmental ROM at the upper cervical spine (Oc–C2).


Sign in / Sign up

Export Citation Format

Share Document