HEPATOCYTE TOLL-LIKE RECEPTOR 2 EXPRESSION IN VIVO AND IN VITRO: ROLE OF CYTOKINES IN INDUCTION OF RAT TLR2 GENE EXPRESSION BY LIPOPOLYSACCHARIDE

Shock ◽  
2000 ◽  
Vol 14 (3) ◽  
pp. 361-365 ◽  
Author(s):  
Shubing Liu ◽  
Neil A. Salyapongse ◽  
David A. Geller ◽  
Yoram Vodovotz ◽  
Timothy R. Billiar
Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 692
Author(s):  
Giulia Franzoni ◽  
Antonio Anfossi ◽  
Chiara Grazia De Ciucis ◽  
Samanta Mecocci ◽  
Tania Carta ◽  
...  

Toll-like receptor 2 (TLR2) ligands are attracting increasing attention as prophylactic and immunotherapeutic agents against pathogens and tumors. We previously observed that a synthetic diacylated lipopeptide based on a surface protein of Mycoplasma agalactiae (Mag-Pam2Cys) strongly activated innate immune cells, including porcine monocyte-derived macrophages (moMΦ). In this study, we utilized confocal microscopy, flow cytometry, multiplex cytokine ELISA, and RT-qPCR to conduct a comprehensive analysis of the effects of scalar doses of Mag-Pam2Cys on porcine moMΦ. We observed enhanced expression of activation markers (MHC class I, MHC class II DR, CD25), increased phagocytotic activity, and release of IL-12 and proinflammatory cytokines. Mag-Pam2Cys also upregulated the gene expression of several IFN-α subtypes, p65, NOS2, and molecules with antimicrobial activities (CD14, beta defensin 1). Overall, our data showed that Mag-Pam2Cys polarized porcine macrophages towards a proinflammatory antimicrobial phenotype. However, Mag-Pam2Cys downregulated the expression of IFN-α3, six TLRs (TLR3, -4, -5, -7, -8, -9), and did not interfere with macrophage polarization induced by the immunosuppressive IL-10, suggesting that the inflammatory activity evoked by Mag-Pam2Cys could be regulated to avoid potentially harmful consequences. We hope that our in vitro results will lay the foundation for the further evaluation of this diacylated lipopeptide as an immunopotentiator in vivo.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 650 ◽  
Author(s):  
Wlaa Assi ◽  
Tomoya Hirose ◽  
Satoshi Wada ◽  
Ryosuke Matsuura ◽  
Shin-nosuke Takeshima ◽  
...  

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle and is closely related to human T-cell leukemia viruses. We investigated the role of a new host protein, PRMT5, in BLV infection. We found that PRMT5 is overexpressed only in BLV-infected cattle with a high proviral load, but not in those with a low proviral load. Furthermore, this upregulation continued to the lymphoma stage. PRMT5 expression was upregulated in response to experimental BLV infection; moreover, PRMT5 upregulation began in an early stage of BLV infection rather than after a long period of proviral latency. Second, siRNA-mediated PRMT5 knockdown enhanced BLV gene expression at the transcript and protein levels. Additionally, a selective small-molecule inhibitor of PRMT5 (CMP5) enhanced BLV gene expression. Interestingly, CMP5 treatment, but not siRNA knockdown, altered the gp51 glycosylation pattern and increased the molecular weight of gp51, thereby decreasing BLV-induced syncytium formation. This was supported by the observation that CMP5 treatment enhanced the formation of the complex type of N-glycan more than the high mannose type. In conclusion, PRMT5 overexpression is related to the development of BLV infection with a high proviral load and lymphoma stage and PRMT5 inhibition enhances BLV gene expression. This is the first study to investigate the role of PRMT5 in BLV infection in vivo and in vitro and to reveal a novel function for a small-molecule compound in BLV-gp51 glycosylation processing.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 74-74
Author(s):  
Yoshiaki Yamamoto ◽  
Yohann Loriot ◽  
Eliana Beraldi ◽  
Tianyuan Zhou ◽  
Youngsoo Kim ◽  
...  

74 Background: While recent reports link androgen receptor (AR) variants (AR-Vs) to castration resistant prostate cancer (CRPC), the biological significance of AR-Vs in AR-regulated cell survival and proliferation, independent of AR full length (AR-FL), remains controversial. To define the functional role of AR-FL and AR-Vs in MDV3100-resistant (MDV-R), we designed antisense oligonucleotide (ASO) targeting exon 1 and exon 8 in AR to knockdown AR-FL alone or in combination with AR-Vs and examined these effects in MDV-R LNCaP-derived cells in vitro and in vivo. Methods: We generated by selection MDV-R LNCaP-derived sub-lines that uniformly expressed high levels of both AR-FL and AR-V7 compared to CRPC LNCaP xenografts. Cell growth rates, protein and gene expression were analyzed using crystal violet assay, western blotting and real-time PCR, respectively. Exon 1 and 8 AR-ASO were evaluated in MDV-R49F CRPC LNCaP xenografts. Results: AR-V7 was transiently transfected in MDV-R49F cells and differential knockdown of AR-V7 and/or AR-FL by exon 1 versus exon 8 AR-ASO was used to evaluate relative biologic contributions of AR-FL versus AR-V7 in MDV-R LNCaP AR-V7 overexpressing cells. Exon 1 and 8 AR-ASO treatment in these cells similarly decreased prostate-specific antigen (PSA) expression and induced apoptosis as measured by caspase-3 and PARP cleavage and cell growth inhibition. To further define the functional role of AR-Vs in MDV-R LNCaP cells, we used a CE3 siRNA that specifically silenced AR-V7, but not AR-FL in MDV-R LNCaP cells. AR-V7 knockdown did not decrease PSA levels, did not induce apoptosis, and did not inhibit cell growth. In MDV-R LNCaP cells, exon 1 and 8 ASO similarly suppressed cell growth and AR-regulated gene expression in vitro and in vivo. Conclusions: These results indicate that the AR remains an important driver of MDV3100 resistance and, the biologic consequences mainly driven by AR-FL in MDV-R LNCaP models.


2009 ◽  
Vol 77 (7) ◽  
pp. 2948-2956 ◽  
Author(s):  
Diego A. Vargas-Inchaustegui ◽  
Wendy Tai ◽  
Lijun Xin ◽  
Alison E. Hogg ◽  
David B. Corry ◽  
...  

ABSTRACT We have previously reported that Leishmania braziliensis infection can activate murine dendritic cells (DCs) and upregulate signaling pathways that are essential for the initiation of innate immunity. However, it remains unclear whether Toll-like receptors (TLRs) are involved in L. braziliensis-mediated DC activation. To address this issue, we generated bone marrow-derived DCs from MyD88−/− and TLR2−/− mice and examined their responsiveness to parasite infection. While wild-type DCs were efficiently activated to produce cytokines and prime naïve CD4+ T cells, L. braziliensis-infected MyD88−/− DCs exhibited less activation and decreased production of interleukin-12 (IL-12) p40. Furthermore, MyD88−/− mice were more susceptible to infection in that they developed larger and prolonged lesions compared to those in control mice. In sharp contrast, the lack of TLR2 resulted in an enhanced DC activation and increased IL-12 p40 production after infection. As such, L. braziliensis-infected TLR2−/− DCs were more competent in priming naïve CD4+ T cells in vitro than were their controls, findings which correlated with an increased gamma interferon production in vivo and enhanced resistance to infection. Our results suggest that while MyD88 is indispensable for the generation of protective immunity to L. braziliensis, TLR2 seems to have a regulatory role during infection.


Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 429-437 ◽  
Author(s):  
Rong L. He ◽  
Jian Zhou ◽  
Crystal Z. Hanson ◽  
Jia Chen ◽  
Ni Cheng ◽  
...  

Abstract The acute-phase protein serum amyloid A (SAA) is commonly considered a marker for inflammatory diseases; however, its precise role in inflammation and infection, which often result in neutrophilia, remains ambiguous. In this study, we demonstrate that SAA is a potent endogenous stimulator of granulocyte colony-stimulated factor (G-CSF), a principal cytokine-regulating granulocytosis. This effect of SAA is dependent on Toll-like receptor 2 (TLR2). Our data demonstrate that, in mouse macrophages, both G-CSF mRNA and protein were significantly increased after SAA stimulation. The induction of G-CSF was blocked by an anti-TLR2 antibody and markedly decreased in the TLR2-deficient macrophages. SAA stimulation results in the activation of nuclear factor–κB and binding activity to the CK-1 element of the G-CSF promoter region. In vitro reconstitution experiments also support that TLR2 mediates SAA-induced G-CSF expression. In addition, SAA-induced secretion of G-CSF was sensitive to heat and proteinase K treatment, yet insensitive to polymyxin B treatment, indicating that the induction is a direct effect of SAA. Finally, our in vivo studies confirmed that SAA treatment results in a significant increase in plasma G-CSF and neutrophilia, whereas these responses are ablated in G-CSF– or TLR2-deficient mice.


2005 ◽  
Vol 441 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Paul Gallagher ◽  
Yongde Bao ◽  
Solange M.T. Serrano ◽  
Gavin D. Laing ◽  
R. David G. Theakston ◽  
...  

2010 ◽  
Vol 79 (3) ◽  
pp. 1118-1123 ◽  
Author(s):  
Amanda McBride ◽  
Kamlesh Bhatt ◽  
Padmini Salgame

ABSTRACTPublished work indicates that the contribution of Toll-like receptor 2 (TLR2) to host resistance during acuteMycobacterium tuberculosisinfection is marginal. However, in these studies, TLR2 participation in the memory immune response toM. tuberculosiswas not determined. The substantialin vitroevidence thatM. tuberculosisstrongly triggers TLR2 on dendritic cells and macrophages to bring about either activation or inhibition of antigen-presenting cell (APC) functions, along with accumulating evidence that memory T cell development can be calibrated by TLR signals, led us to question the role of TLR2 in host resistance to secondary challenge withM. tuberculosis. To address this question, a memory immunity model was employed, and the response of TLR2-deficient (TLR2 knockout [TLR2KO]) mice following a secondary exposure toM. tuberculosiswas compared to that of wild-type (WT) mice based on assessment of the bacterial burden, recall response, phenotype of recruited T cells, and granulomatous response. We found that upon rechallenge withM. tuberculosis, both WT and TLR2KO immune mice displayed similarly enhanced resistance to infection in comparison to their naïve counterparts. The frequencies ofM. tuberculosis-specific gamma interferon (IFN-γ)-producing T cells, the phenotypes of recruited T cells, and the granulomatous responses were also similar between WT and TLR2KO immune mice. Together, the findings from this study indicate that TLR2 signaling does not influence memory immunity toM. tuberculosis.


2016 ◽  
Vol 62 (2) ◽  
pp. 134-140
Author(s):  
A.V. Smirnova ◽  
V.N. Sukhorukov ◽  
V.P. Karagodin ◽  
A.N. Orekhov

MicroRNAs (miRNAs) are small (~22 nucleotides in length) noncoding RNA sequences regulating gene expression at posttranscriptional level. MicroRNAs bind complementarily to certain mRNA and cause gene silencing. The involvement of miRNAs in the regulation of lipid metabolism, inflammatory response, cell cycle progression and proliferation, oxidative stress, platelet activation, endothelial and vascular smooth muscle cells (VSMC) function, angiogenesis and plaque formation and rapture indicates important roles in the initiation and progression of atherosclerosis. The key role of microRNAs in pathophysiology of cardiovascular diseases (CVDs), including atherosclerosis, was demonstrated in recent studies. Creating antisense oligonucleotides is a novel technique for selective changes in gene expression both in vitro and in vivo. In this review, we draw attention to the role of miRNAs in atherosclerosis progression, using miRNA as the potential biomarkers and targets in the CVDs, as well as possible application of antisense oligonucleotides


Sign in / Sign up

Export Citation Format

Share Document