TRAFFICKING AND FUNCTION OF THE EPITHELIAL SODIUM CHANNEL ARE INHIBITED BY EPIDERMAL GROWTH FACTOR IN A RAT PAROTID GLAND CELL LINE.

2007 ◽  
Vol 55 (1) ◽  
pp. S287
Author(s):  
A. A. Reeves ◽  
S. B. Mustafa ◽  
B. M. Henson ◽  
M. M. Vasquez ◽  
R. Castro
1991 ◽  
Vol 42 (12) ◽  
pp. 2333-2340 ◽  
Author(s):  
Yoichi Nakagawa ◽  
John Gammichia ◽  
Karnam R. Purushotham ◽  
Charlotte A. Schneyer ◽  
Michael G. Humphreys-Beher

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1559
Author(s):  
Amena Ali ◽  
Abuzer Ali ◽  
Abu Tahir ◽  
Md. Afroz Bakht ◽  
Salahuddin ◽  
...  

Cancer is the world’s second leading cause of death, accounting for nearly 10 million deaths and 19.3 million new cases in 2020. Curcumin analogs are gaining popularity as anticancer agents currently. We reported herein the isolation, molecular engineering, molecular docking, antiproliferative, and anti-epidermal growth factor receptor (anti-EGFR) activities of curcumin analogs. Three curcumin analogs were prepared and docked against the epidermal growth factor receptor (EGFR), revealing efficient binding. Antiproliferative activity against 60 NCI cancer cell lines was assessed using National Cancer Institute (NCI US) protocols. The compound 3b,c demonstrated promising antiproliferative activity in single dose (at 10 µM) as well as five dose (0.01, 0.10, 1.00, 10, and 100 µM). Compound 3c inhibited leukemia cancer panel better than other cancer panels with growth inhibition of 50% (GI50) values ranging from 1.48 to 2.73 µM, and the most promising inhibition with GI50 of 1.25 µM was observed against leukemia cell line SR, while the least inhibition was found against non-small lung cancer cell line NCI-H226 with GI50 value of 7.29 µM. Compounds 3b,c demonstrated superior antiproliferative activity than curcumin and gefitinib. In molecular docking, compound 3c had the most significant interaction with four H-bonds and three π–π stacking, and compound 3c was found to moderately inhibit EGFR. The curcumin analogs discovered in this study have the potential to accelerate the anticancer drug discovery program.


1984 ◽  
Vol 102 (1) ◽  
pp. 57-61 ◽  
Author(s):  
H. Humphries ◽  
S. MacNeil ◽  
D. S. Munro ◽  
S. Tomlinson

ABSTRACT Recent evidence suggests that epidermal growth factor (EGF) may play an important role in the regulation of thyroid growth and function. We have examined the interaction of murine EGF (mEGF) with human and porcine thyroid membranes and compared this with the binding of bovine TSH (bTSH) using 125I-labelled hormones as tracers. The characteristics of the binding of mEGF were found to be similar for human and porcine thyroid membranes. Epidermal growth factor bound with high affinity (affinity constant = 1·4 × 109 l/mol); the density of binding sites was low compared with the TSH receptor. At 37 °C, the binding of 125I-labelled EGF was maximal at 1 h and was saturable in the presence of unlabelled EGF; half-maximal inhibition was at 1 ng EGF/tube (0·5 nmol/l) using 0·5 mg membrane protein/tube. Unlabelled bTSH had no effect on the binding of labelled EGF. Similarly, unlabelled EGF did not affect the binding of labelled TSH; hence it was concluded that mEGF and bTSH bound to independent sites. Epidermal growth factor had no effect on adenylate cyclase activity in membranes prepared from human non-toxic goitre; increasing concentrations of EGF did not affect basal, TSH-stimulated or fluoride-stimulated enzyme activity. J. Endocr. (1984) 102, 57–61


Endocrinology ◽  
1983 ◽  
Vol 112 (5) ◽  
pp. 1680-1686 ◽  
Author(s):  
K. WESTERMARK ◽  
F. A. KARLSSON ◽  
B. WESTERMARK

1997 ◽  
Vol 272 (22) ◽  
pp. 14349-14355 ◽  
Author(s):  
Eiji Miyoshi ◽  
Shigeki Higashiyama ◽  
Takatoshi Nakagawa ◽  
Norio Hayashi ◽  
Naoyuki Taniguchi

Sign in / Sign up

Export Citation Format

Share Document