#312 A potential autocrine role for vascular endothelial growth factor (VEGF) in human neuroblastoma (NBL) cells via signaling through the novel VEGF receptor, neuropilin-1

1999 ◽  
Vol 21 (4) ◽  
pp. 317
Author(s):  
K. Marcus ◽  
M. Johnson ◽  
R. Adam ◽  
S. Soker ◽  
M. Donovan ◽  
...  
Cancer ◽  
2001 ◽  
Vol 94 (1) ◽  
pp. 258-263 ◽  
Author(s):  
Mitra Fakhari ◽  
Dieter Pullirsch ◽  
Dietmar Abraham ◽  
Kurosh Paya ◽  
Reinhold Hofbauer ◽  
...  

Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 1992-1999 ◽  
Author(s):  
Matilde Murga ◽  
Oscar Fernandez-Capetillo ◽  
Giovanna Tosato

AbstractNeuropilin-1 (NRP-1) is a type 1 membrane protein that binds the axon guidance factors belonging to the class-3 semaforin family. In endothelial cells, NRP-1 serves as a co-receptor for vascular endothelial growth factor (VEGF) and regulates VEGF receptor 2 (VEGFR-2)–dependent angiogenesis. Although gene-targeting studies documenting embryonic lethality in NRP-1 null mice have demonstrated a critical role for NRP-1 in vascular development, the activities of NRP-1 in mature endothelial cells have been incompletely defined. Using RNA interference-mediated silencing of NRP-1 or VEGFR-2 in primary human endothelial cells, we confirm that NRP-1 modulates VEGFR-2 signaling-dependent mitogenic functions of VEGF. Importantly, we now show that NRP-1 regulates endothelial cell adhesion to extracellular matrix proteins independently of VEGFR-2. Based on its dual role as an enhancer of VEGF activity and a mediator of endothelial cell adhesiveness described here, NRP-1 emerges as a promising molecular target for the development of antiangiogenic drugs.


2004 ◽  
Vol 286 (3) ◽  
pp. L539-L545 ◽  
Author(s):  
Altaf S. Kazi ◽  
Shidan Lotfi ◽  
Elena A. Goncharova ◽  
Omar Tliba ◽  
Yassine Amrani ◽  
...  

In severe asthma, cytokines and growth factors contribute to the proliferation of smooth muscle cells and blood vessels, and to the increased extracellular matrix deposition that constitutes the process of airway remodeling. Vascular endothelial growth factor (VEGF), which regulates vascular permeability and angiogenesis, also modulates the function of nonendothelial cell types. In this study, we demonstrate that VEGF induces fibronectin secretion by human airway smooth muscle (ASM) cells. In addition, stimulation of ASM with VEGF activates ERK, but not p38MAPK, and fibronectin secretion is ERK dependent. Both ERK activation and fibronectin secretion appear to be mediated through the VEGF receptor flt-1, as evidenced by the effects of the flt-1-specific ligand placenta growth factor. Finally, we demonstrate that ASM cells constitutively secrete VEGF, which is increased in response to PDGF, transforming growth factor-β, IL-1β, and PGE2. We conclude that ASM-derived VEGF, through modulation of the extracellular matrix, may play an important role in airway remodeling seen in asthma.


Sign in / Sign up

Export Citation Format

Share Document