Modulation of interleukin-7 receptor expression characterizes differentiation of CD8 T cells specific for HIV, EBV and CMV

AIDS ◽  
2005 ◽  
Vol 19 (17) ◽  
pp. 1981-1986 ◽  
Author(s):  
François Boutboul ◽  
Denis Puthier ◽  
Victor Appay ◽  
Olivier Pellé ◽  
Hocine Ait-Mohand ◽  
...  
2006 ◽  
Vol 74 (4) ◽  
pp. 2495-2497 ◽  
Author(s):  
Alexandre Morrot ◽  
Ian A. Cockburn ◽  
Michael Overstreet ◽  
Dolores Rodríguez ◽  
Fidel Zavala

ABSTRACT CD8+ T cells induced by Plasmodium yoelii sporozoites develop into protective memory cells without undergoing changes in interleukin-7 receptor α (IL-7Rα) expression, differing from the development of memory CD8+ T cells against viruses, which is associated with enhanced IL-7Rα expression. This suggests a microbe-dependent diversity in the signals determining the development of memory populations.


2006 ◽  
Vol 43 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Elliott M Faller ◽  
Mark J McVey ◽  
Juzer A Kakal ◽  
Paul A MacPherson

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii89-ii89
Author(s):  
Subhajit Ghosh ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
Arijita Jash ◽  
Anita Mahadevan ◽  
...  

Abstract BACKGROUND Patients with glioblastoma (GBM) are treated with radiation (RT) and temozolomide (TMZ). These treatments can cause prolonged severe lymphopenia, which is associated with shorter survival. NT-I7 (efineptakin alfa) is a long-acting recombinant human IL-7 that supports the proliferation and survival CD4+ and CD8+ cells in both human and mice. We tested whether NT-I7 would protect T cells from treatment-induced lymphopenia and improve survival. METHODS C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day x 5 days), TMZ (33 mg/kg/day x 5 days) and/or NT-17 (10 mg/kg on the final day of RT completion). We followed for survival and profiled CD3, CD8, CD4, FOXP3 in peripheral blood over time. In parallel, we assessed cervical lymph nodes, bone marrow, thymus, spleen, and the tumor 6 days after NT-I7 treatment. RESULTS Median survival in mice treated with NT-I7 combined with RT was significantly better than RT alone (GL261: 40d vs 34d, p< 0.0021; CT2A: 90d vs 40d, p< 0.0499) or NT-I7 alone (GL261: 40d vs 24d, p< 0.008; CT2A: 90d vs 32d, p< 0.0154). NT-17 with RT was just as effective as NT-I7 combined with RT and TMZ in both GL261 (40d vs 47d) and CT2A (90d vs 90d). NT-I7 treatment significantly increased the amount of CD8+ cells in the peripheral blood and tumor. NT- I7 rescued CD8+ T cells from RT induced lymphopenia in peripheral blood, spleen, and lymph nodes. NT-I7 alone or NT-I7 in combination with RT increased the CD8+ T cells in peripheral blood and tumor while reducing the FOXP3+ T-reg cells in the tumor microenvironment. CONCLUSIONS NT-I7 protects T-cells from RT induced lymphopenia, improves cytotoxic CD8+ T lymphocytes systemically and in the tumor, and improves survival. Presently, a phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A599-A599
Author(s):  
Subhajit Ghosh ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
Arijita Jash ◽  
Anita Mahadevan ◽  
...  

BackgroundRadiation (RT) and temozolomide (TMZ), which are standard of care for patients with glioblastoma (GBM), can cause prolonged severe lymphopenia. Lymphopenia, in turn, is an independent risk factor for shorter survival. Interleukin-7 (IL-7) is a cytokine that is required for T cell homeostasis and proliferation. IL-7 levels are inappropriately low in GBM patients with lymphopenia. NT-I7 (efineptakin alfa) is a long-acting recombinant human IL-7 that supports the proliferation and survival CD4+ and CD8+ cells in both human and mice. We tested whether NT-I7 rescues treatment-induced lymphopenia and improves survival.MethodsImmunocompetent C57BL/6 mice bearing two intracranial glioma models (GL261 and CT2A) were treated with RT (1.8 Gy/day x 5 days), TMZ (33 mg/kg/day x 5 days) and/or NT-I7 (10 mg/kg on the final day of RT completion). We profiled the CD3, CD8, CD4, FOXP3 cells in peripheral blood over time. We also immunoprofiled cervical lymph nodes, bone marrow, thymus, spleen, and the tumor 6 days after NT-I7 treatment. Survival was monitored daily.ResultsMedian survival in mice treated with NT-I7 combined with RT was significantly longer than RT alone (GL261: 40d vs 34d, p<0.0021; CT2A: 90d vs 40d, p<0.0499) or NT-I7 alone (GL261: 40d vs 24d, p<0.008; CT2A: 90d vs 32d, p<0.0154). NT-I7 with RT was just as effective as NT-I7 combined with RT and TMZ in both GL261(40d vs 47d) and CT2A (90d vs 90d). Cytotoxic CD8+ T cells were increased in both peripheral blood (0.66 x 105 to 3.34 x 105; P≤0.0001) and tumor (0.53 x 103 to 1.83 x 103; P≤0.0001) in mice treated with NT-I7 when compared to control. Similarly, NT-I7 in combination with RT increased the CD8+ T cells in peripheral blood (0.658 x 105 to 1.839 x 105 P≤0.0001) when compared to RT alone. There were decreases in tumor infiltrating FOXP3+ T-reg cells in mice treated with NT-I7 (1.9 x 104 to 0.75 x 104 P≤0.0001) and NT-I7 + RT (1.9 x 104 to 0.59 x 104 P≤0.0001) when compared to the control group without NT-I7. In addition, NT- I7 treatment increased CD8+ T cells in thymus, spleen, and lymph nodes.ConclusionsNT-I7 enhances cytotoxic CD8+ T lymphocytes systemically and in the tumor microenvironment, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


Nature ◽  
2021 ◽  
Author(s):  
Justina X. Caushi ◽  
Jiajia Zhang ◽  
Zhicheng Ji ◽  
Ajay Vaghasia ◽  
Boyang Zhang ◽  
...  

AbstractPD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a ‘barcode’ to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein–Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.


1998 ◽  
Vol 187 (3) ◽  
pp. 389-402 ◽  
Author(s):  
Mamoru Watanabe ◽  
Yoshitaka Ueno ◽  
Tomoharu Yajima ◽  
Susumu Okamoto ◽  
Tatsuhiko Hayashi ◽  
...  

We have demonstrated that intestinal epithelial cells produce interleukin 7 (IL-7), and IL-7 serves as a potent regulatory factor for proliferation of intestinal mucosal lymphocytes expressing functional IL-7 receptor. To clarify the mechanism by which locally produced IL-7 regulates the mucosal lymphocytes, we investigated IL-7 transgenic mice. Here we report that transgenic mice expressing murine IL-7 cDNA driver by the SRα promoter developed chronic colitis in concert with the expression of SRα/IL-7 transgene in the colonic mucosa. IL-7 transgenic but not littermate mice developed chronic colitis at 4–12 wk of age, with histopathological similarity to ulcerative colitis in humans. Southern blot hybridization and competitive PCR demonstrated that the expression of IL-7 messenger RNA was increased in the colonic mucosal lymphocytes but not in the colonic epithelial cells. IL-7 protein accumulation was decreased in the goblet cell–depleted colonic epithelium in the transgenic mice. Immunohistochemical and cytokine production analysis showed that lymphoid infiltrates in the lamina propria were dominated by T helper cell type 1 CD4+ T cells. Flow cytometric analysis demonstrated that CD4+ intraepithelial T cells were increased, but T cell receptor γ/δ T cells and CD8α/α cells were not increased in the area of chronic inflammation. Increased IL-7 receptor expression in mucosal lymphocytes was demonstrated in the transgenic mice. These findings suggest that chronic inflammation in the colonic mucosa may be mediated by dysregulation of colonic epithelial cell–derived IL-7, and this murine model of chronic colitis may contribute to the understanding of the pathogenesis of human inflammatory bowel disease.


2022 ◽  
pp. clincanres.0947.2021
Author(s):  
Jian L. Campian ◽  
Subhajit Ghosh ◽  
Vaishali Kapoor ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document